H2 PHYSICS DEFINITIONS LIST

Term	Definition	
	SECTION I: MEASUREMENT	
	Chapter 1: Measurement	
Scalar	A scalar quantity is one which has <u>magnitude</u> but <u>no</u> <u>direction.</u>	
Vector	A vector is a quantity which has <u>direction as well as</u> magnitude.	
S	ECTION II: NEWTONIAN MECHANICS	
Chapter 2: Kinematics		
Displacement, s	Total distance moved by an object <u>along a particular</u> <u>direction.</u>	
Speed	The rate of change of <u>distance</u> with respect to time.	
Velocity, v	The rate of change of <u>displacement</u> with respect to time.	
Acceleration, a	The rate of change of <u>velocity</u> with respect to time.	
Average speed/velocity	The <u>average rate</u> of change of distance/displacement with respect to time.	
Instantaneous Velocity	The rate of change of displacement with respect to time <u>at a</u> <u>particular time.</u>	
	Chapter 3: Dynamics	
Newton's First Law	A body <u>continues in its state of rest or uniform motion in a</u> <u>straight line</u> unless a <u>resultant external force</u> acts on it.	
Newton's Second Law	The <u>rate of change of momentum</u> of a body is <u>proportional</u> to the <u>resultant force</u> acting on it and occurs <u>in the direction</u> of the force.	
Newton's Third Law	If body A exerts a force on body B, then body B exerts an equal but opposite force on body A.	
Linear Momentum	The product of the mass of an object and its velocity.	
Impulse	Impulse is the area under the force-time graph.	
Force, F	The <u>rate of change of momentum</u> .	
Principle of Conservation of Momentum	The total momentum of a system remains <u>constant</u> <u>provided no external resultant forces</u> act on the system. OR The total momentum of an <u>isolated system</u> of bodies is	
Inertia	<u>constant.</u> The reluctance of a body to start moving or to change its	
	motion once it has started.	
Equilibrium	When the <u>state</u> of an object remains <u>unchanged</u> even though two or more forces are acting on it.	
	Chapter 4: Forces	
Hooke's Law	The <u>force</u> needed to cause an extension/compression in a spring is <u>directly proportional to its extension/compression</u> .	
Upthrust, U	It is the <u>upward force</u> acting on an object that is <u>partially or</u> <u>fully immersed in a fluid</u> . (RJCPromo07)	
Equilibrium	A system is in equilibrium if there is <u>no resultant force</u> and	

Compiled bv: Euaene Ho

	no resultant torque acting on it.
Centre of Gravity	The point at which all the weight of an object may be
	considered to be acting as if the object were a particle.
Couple	A couple consists of a pair of parallel forces of equal
	magnitude but opposite direction whose lines of action do
	not coincide.
Moment of a Force	The moment of a force about a point is the product of the
	force with the perpendicular distance of the force from that
	point.
Torque of a Couple, τ	The torque of a couple is the <u>product</u> of <u>one of the forces</u>
	with the perpendicular separation between the couple.
Archimedes' Principle	An object immersed fully or partially in a fluid experiences a
	buoyant force equal in magnitude to the weight of the fluid
	displaced.
Centre of Mass	The point at which all of the mass of an object or system
	may be <u>considered to be concentrated</u> .
Principle of Flotation	An object floating in a fluid always displaces its own weight
Deteries of Eq. (19) at the	of fluid.
Rotational Equilibrium	A system is in rotational equilibrium if there is <u>no resultant</u>
	torque.
Work Done	Chapter 5: Work, Energy and Power
work Done	The <u>product</u> of a <u>force and the displacement in the direction</u> of the force.
Power	Work done per unit time.
FOWEI	Chapter 6: Motion in a Circle
Angular Velocity, ω	The <u>rate of change of angular displacement</u> with respect to
Angular velocity, w	
	I IIMP
Centripetal Acceleration	time. Acceleration which is always perpendicular to the velocity
Centripetal Acceleration	Acceleration which is always perpendicular to the velocity
	Acceleration which is always <u>perpendicular to the velocity</u> and always <u>acts towards the centre</u> of the circular motion.
Centripetal Acceleration Uniform Circular Motion	Acceleration which is always <u>perpendicular to the velocity</u> and always <u>acts towards the centre</u> of the circular motion. The motion of an object moving in circular path at <u>constant</u>
Uniform Circular Motion	Acceleration which is always <u>perpendicular to the velocity</u> and always <u>acts towards the centre</u> of the circular motion. The motion of an object moving in circular path at <u>constant</u> <u>speed</u> with <u>constant angular velocity</u> .
	Acceleration which is always <u>perpendicular to the velocity</u> and always <u>acts towards the centre</u> of the circular motion. The motion of an object moving in circular path at <u>constant</u>
Uniform Circular Motion	Acceleration which is always <u>perpendicular to the velocity</u> and always <u>acts towards the centre</u> of the circular motion. The motion of an object moving in circular path at <u>constant</u> <u>speed</u> with <u>constant angular velocity</u> . The <u>resultant perpendicular force</u> acting on an object
Uniform Circular Motion	Acceleration which is always <u>perpendicular to the velocity</u> and always <u>acts towards the centre</u> of the circular motion. The motion of an object moving in circular path at <u>constant</u> <u>speed</u> with <u>constant angular velocity</u> . The <u>resultant perpendicular force</u> acting on an object moving in circular motion
Uniform Circular Motion Centripetal Force	Acceleration which is always <u>perpendicular to the velocity</u> and always <u>acts towards the centre</u> of the circular motion. The motion of an object moving in circular path at <u>constant</u> <u>speed</u> with <u>constant angular velocity</u> . The <u>resultant perpendicular force</u> acting on an object moving in circular motion Chapter 7: Gravitational Field
Uniform Circular Motion Centripetal Force	Acceleration which is always <u>perpendicular to the velocity</u> and always <u>acts towards the centre</u> of the circular motion. The motion of an object moving in circular path at <u>constant</u> <u>speed</u> with <u>constant angular velocity</u> . The <u>resultant perpendicular force</u> acting on an object moving in circular motion Chapter 7: Gravitational Field A gravitational field due to a body is a <u>region in space</u> in
Uniform Circular Motion Centripetal Force	Acceleration which is always <u>perpendicular to the velocity</u> and always <u>acts towards the centre</u> of the circular motion. The motion of an object moving in circular path at <u>constant</u> <u>speed</u> with <u>constant angular velocity</u> . The <u>resultant perpendicular force</u> acting on an object moving in circular motion Chapter 7: Gravitational Field A gravitational field due to a body is a <u>region in space</u> in which <u>another body</u> placed in the region <u>experiences a force</u>
Uniform Circular Motion Centripetal Force Gravitational Field	Acceleration which is always <u>perpendicular to the velocity</u> and always <u>acts towards the centre</u> of the circular motion. The motion of an object moving in circular path at <u>constant</u> <u>speed</u> with <u>constant angular velocity</u> . The <u>resultant perpendicular force</u> acting on an object moving in circular motion Chapter 7: Gravitational Field A gravitational field due to a body is a <u>region in space</u> in which <u>another body</u> placed in the region <u>experiences a force</u> <u>of attraction by the first body</u> .
Uniform Circular Motion Centripetal Force Gravitational Field Newton's Law of	Acceleration which is always <u>perpendicular to the velocity</u> and always <u>acts towards the centre</u> of the circular motion. The motion of an object moving in circular path at <u>constant</u> <u>speed</u> with <u>constant angular velocity</u> . The <u>resultant perpendicular force</u> acting on an object moving in circular motion Chapter 7: Gravitational Field A gravitational field due to a body is a <u>region in space</u> in which <u>another body</u> placed in the region <u>experiences a force</u> of attraction by the first body. Newton's law of gravitation states that the <u>force of</u> <u>attraction between two point masses</u> is <u>directly</u> <u>proportional</u> to the <u>product of their masses</u> and <u>inversely</u>
Uniform Circular Motion Centripetal Force Gravitational Field Newton's Law of Gravitation/Gravitational Force	Acceleration which is always <u>perpendicular to the velocity</u> and always <u>acts towards the centre</u> of the circular motion. The motion of an object moving in circular path at <u>constant</u> <u>speed with constant angular velocity</u> . The <u>resultant perpendicular force</u> acting on an object moving in circular motion Chapter 7: Gravitational Field A gravitational field due to a body is a <u>region in space</u> in which <u>another body</u> placed in the region <u>experiences a force</u> of attraction by the first body. Newton's law of gravitation states that the <u>force of</u> <u>attraction between two point masses</u> is <u>directly</u> <u>proportional</u> to the <u>product of their masses</u> and <u>inversely</u> <u>proportional</u> to the <u>square of their distance apart</u> .
Uniform Circular Motion Centripetal Force Gravitational Field Newton's Law of Gravitation/Gravitational Force Gravitational Field	Acceleration which is always <u>perpendicular to the velocity</u> and always <u>acts towards the centre</u> of the circular motion. The motion of an object moving in circular path at <u>constant</u> <u>speed</u> with <u>constant angular velocity</u> . The <u>resultant perpendicular force</u> acting on an object moving in circular motion Chapter 7: Gravitational Field A gravitational field due to a body is a <u>region in space</u> in which <u>another body</u> placed in the region <u>experiences a force</u> of attraction by the first body. Newton's law of gravitation states that the <u>force of</u> <u>attraction between two point masses</u> is <u>directly</u> <u>proportional</u> to the <u>product of their masses</u> and <u>inversely</u> <u>proportional</u> to the <u>square of their distance apart</u> . The gravitational field strength at a point is the <u>gravitational</u>
Uniform Circular Motion Centripetal Force Gravitational Field Newton's Law of Gravitation/Gravitational Force	Acceleration which is always <u>perpendicular to the velocity</u> and always <u>acts towards the centre</u> of the circular motion. The motion of an object moving in circular path at <u>constant</u> <u>speed</u> with <u>constant angular velocity</u> . The <u>resultant perpendicular force</u> acting on an object moving in circular motion Chapter 7: Gravitational Field A gravitational field due to a body is a <u>region in space</u> in which <u>another body</u> placed in the region <u>experiences a force</u> <u>of attraction by the first body</u> . Newton's law of gravitation states that the <u>force of</u> <u>attraction between two point masses</u> is <u>directly</u> <u>proportional</u> to the <u>product of their masses</u> and <u>inversely</u> <u>proportional</u> to the <u>square of their distance apart</u> . The gravitational field strength at a point is the <u>gravitational</u> <u>force per unit mass</u> experienced by a mass placed at that
Uniform Circular Motion Centripetal Force Gravitational Field Newton's Law of Gravitation/Gravitational Force Gravitational Field	Acceleration which is always <u>perpendicular to the velocity</u> and always <u>acts towards the centre</u> of the circular motion. The motion of an object moving in circular path at <u>constant</u> <u>speed</u> with <u>constant angular velocity</u> . The <u>resultant perpendicular force</u> acting on an object moving in circular motion Chapter 7: Gravitational Field A gravitational field due to a body is a <u>region in space</u> in which <u>another body</u> placed in the region <u>experiences a force</u> of attraction by the first body. Newton's law of gravitation states that the <u>force of</u> <u>attraction between two point masses</u> is <u>directly</u> <u>proportional</u> to the <u>product of their masses</u> and <u>inversely</u> <u>proportional</u> to the <u>square of their distance apart</u> . The gravitational field strength at a point is the <u>gravitational</u> <u>force per unit mass</u> experienced by a mass placed at that point.
Uniform Circular Motion Centripetal Force Gravitational Field Newton's Law of Gravitation/Gravitational Force Gravitational Field	Acceleration which is always <u>perpendicular to the velocity</u> and always <u>acts towards the centre</u> of the circular motion. The motion of an object moving in circular path at <u>constant</u> <u>speed</u> with <u>constant angular velocity</u> . The <u>resultant perpendicular force</u> acting on an object moving in circular motion Chapter 7: Gravitational Field A gravitational field due to a body is a <u>region in space</u> in which <u>another body</u> placed in the region <u>experiences a force</u> <u>of attraction by the first body</u> . Newton's law of gravitation states that the <u>force of</u> <u>attraction between two point masses</u> is <u>directly</u> <u>proportional</u> to the <u>product of their masses</u> and <u>inversely</u> <u>proportional</u> to the <u>square of their distance apart</u> . The gravitational field strength at a point is the <u>gravitational</u> <u>force per unit mass</u> experienced by a mass placed at that

	that point without a change in kinetic energy. (RJCPromo07)	
Gravitational Potential	The Gravitational Potential Energy of a mass is defined as	
Energy	the work done by an external agent in bringing the mass	
0,	from infinity to its present location (without any change in	
	KE).	
Chapter 8: Oscillations		
Amplitude	The maximum displacement from the equilibrium position.	
Period, T	The time taken to complete one cycle of oscillation.	
Frequency, <i>f</i>	The <u>number of complete cycles per second</u> made by the	
	oscillating object.	
Simple Harmonic Motion	The motion of the body whose <u>acceleration is directly</u>	
	proportional to its displacement from a fixed point	
	(equilibrium position) and is <u>always directed towards that</u>	
	fixed point.	
Resonance	The tendency of a system to oscillate at <u>maximum</u>	
	amplitude at its natural frequency.	
Forced Oscillation	When the system is forced to oscillate at <u>a frequency other</u>	
	than the natural frequency by a periodic external force.	
Natural Frequency	The frequency of oscillation when a system <u>oscillates freely</u>	
Disala constat	without any external force applied.	
Displacement, s	The <u>distance</u> of the oscillating object <u>from its equilibrium</u>	
	position at any instant.	
	SECTION III: THERMAL PHYSICS	
Internal Energy	Chapter 9: Thermal Physics The sum of the microscopic kinetic and potential energies of	
internal chergy	the molecules that make up the system.	
Thermal Equilibrium	When two objects in thermal contact <u>cease to have any</u>	
	exchange of heat.	
Absolute Zero	The theoretical temperature at which the molecules of a	
	substance have the lowest energy and hence, the substance	
	has minimum internal energy.	
Kelvin, K	The Kelvin is defined as <u>1/273.16</u> of the <u>temperature</u>	
- ,	difference between absolute zero and the triple point of	
	water.	
Specific Heat Capacity, c	It is the guantity of heat required to raise the temperature	
	of 1kg of the body by 1K.	
Latent Heat	It is the thermal energy required by matter for a change in	
	phase.	
Specific Latent Heat of	It is the thermal energy required for 1kg of substance to	
Fusion	change from the solid phase to the liquid phase without a	
	change in temperature.	
Specific Latent Heat of	It is the thermal energy required for 1kg of substance to	
Vaporisation	change from the liquid phase to the gaseous phase without	
	a change in temperature.	
First Law of	The First Law of Thermodynamics states that the internal	
Thermodynamics	energy of a system depends only on the thermodynamic	

	state of the system; the increase in the internal energy of a	
	system is <u>equal</u> to the <u>sum</u> of the <u>heat supplied to the</u>	
	system and the work done on the system.	
Triple Point of Water	The particular temperature and pressure at which the <u>three</u>	
	states of water can co-exist in equilibrium.	
Heat Capacity	The <u>quantity of heat</u> required to <u>raise the temperature</u> of	
	the body by <u>1K</u> .	
Ideal Gas	A gas in which <u>all collisions</u> between the atoms and	
	molecules are <u>perfectly elastic</u> and which there are <u>no</u>	
	intermolecular attractive or repulsive forces.	
	SECTION IV: WAVES	
	Chapter 10: Wave Motion	
Wavelength, λ	The distance between corresponding points in successive	
	waveforms, such as two successive crests or two successive	
	troughs.	
Intensity, I	The amount of energy incident per unit area per unit time.	
Phase	The stage of motion of the particle with respect to other	
	particles in the same wave or another wave.	
Transverse Waves	A transverse wave is one in which particles of the medium	
	move in a direction <u>perpendicular</u> to the direction of travel	
	of the wave.	
Longitudinal Waves	A longitudinal wave is one in which particles of the medium	
	move in a direction parallel to the direction of travel of the	
	wave.	
Polarised Waves	All particles vibrate in the same plane at all times	
Electromagnetic	A self-propagating transverse wave in space with electric	
Radiation	and magnetic components.	
	Chapter 11: Superposition	
Principle of	The principle of superposition states that the resultant	
Superposition	displacement at any point is the vector sum of the individual	
	displacement due to each wave arriving at that point.	
	(RJCCT108)	
Diffraction	Diffraction is the bending of waves through an aperture or	
	around an obstacle.	
Interference	Interference is the <u>superposition</u> of two or more <u>coherent</u>	
	waves to give a resultant wave whose resultant amplitude is	
	given by the principle of superposition. (RJCNotes)	
	OR	
	Interference is the superposition of waves in the same	
	region and time so as	
	to form regions of maxima (bright) and minima (dark) due	
	to waves meeting	
	constructively and destructively respectively. (RJCPrelim07)	
Coherence	Sources having constant phase difference.	
SECTION V: ELECTRICITY AND MAGNETISM		
Chapter 12: Electric Fields		

Electric Field Strength, E	The electric field strength at a point is defined as the force
	per unit charge acting on a small positive test charge placed
	at that point.
Coulomb's Law	The force between two point charges is directly
	proportional to the product of the charges and inversely
	proportional to the square of the distance between the
	charges.
Uniform Electric Field	Electric field strength is equal in magnitude and has the
	same direction at all points in the region.
Electric Potential, φ	The electric potential at a point in an electric field is the
	work done per unit charge in bringing a positive test charge
	from infinity to the point (without a change in kinetic
	energy).
	Chapter 13: Current of Electricity
Electric Current, I	The net amount of charge passing through a point per unit
	time.
Coulomb, C	One coulomb is the <u>quantity of electric charge</u> that passes a
-	given point in a circuit in <u>one second</u> when there is a
	<u>constant current of one ampere.</u>
Potential Difference, E	The potential difference between two points in a circuit is
	the amount of electric energy that is converted to other
	forms of energy when a unit charge passes from one point
	to the other.
Volt, V	One volt is the potential difference between two points in a
	circuit in which one joule of energy is converted when one
	<u>coulomb of charge passes from one point to the other.</u>
Resistance, R	The electrical resistance of a conductor is defined as the
	ratio of the p.d. across it to the current through it.
Ohm, Ω	One ohm is defined as the resistance of a conductor in
	which a <u>current of one ampere</u> passes through it when the
	<u>p.d.</u> across it is <u>one volt</u> .
Electromotive Force	The e.m.f. of a source is defined as the amount of energy
(e.m.f.)	converted from other forms to electrical energy when the
	source drives a unit charge round a complete circuit.
Ampere, A	One coulomb per second.
	Chapter 15: Electromagnetism
Magnetic Flux Density, B	The flux density of a magnetic field is the force per unit
	length on a straight conductor carrying unit current placed
	perpendicularly to the field. (RJCCT208)
Tesla, T	The magnetic flux density of a magnetic field is one tesla if
	the force acting on <u>1m length</u> of a conductor carrying <u>1A of</u>
	<u>current</u> placed <u>perpendicular</u> to the field is <u>1N</u> .
Electronvolt, eV	The electronvolt is the energy gained by an electron when it
	is <u>accelerated</u> through a <u>p.d. of one volt</u> .
Chapter 16: Electromagnetic Induction	
Magnetic Flux, φ	Magnetic flux through a plane surface is the product of the

	area porpondicularly
	<u>area perpendicularly.</u>
Veber	One weber is the magnetic flux if a field of flux density one
	tesla exists at right angles to an area of one metre square.
Alagnetic Flux Linkage, Φ	The magnetic flux linkage of a coil is the magnetic flux
	passing through each turn of the coil multiplied by the
	number of turns of the coil.
araday's Law	Whenever there is a change in magnetic flux linkage of a
	circuit or coil, an e.m.f. is induced in the circuit and the
	magnitude is directly proportional to the rate of change of
	magnetic flux linkage of the circuit or coil.
enz's Law	Lenz's Law states that the direction of the induced current is
	such as to oppose the change in flux which causes it.
	Chapter 17: Alternating Current
MS value of an	It is the value of the steady direct current which would
Iternating current	dissipate heat at the same rate in a given resistance as the
	alternating current.
Aean Power	The mean power dissipated by a resistive load is half the
	maximum power for a sinusoidal AC.
inusoidal AC/Voltage	Current/voltage varies periodically with time in magnitude
_	and direction.
Rectification of an AC	Conversion of <u>AC to DC</u> .
alf-wave Rectification	For half the cycle, the diode allows current to flow but for
	the other half of the cycle, the current flow is very small due
	to the <u>high resistance</u> of the diode being in <u>reverse bias</u> .
	SECTION VI: MODERN PHYSICS
	Chapter 18: Quantum Physics
Photoelectric Effect	The emission of electrons from a metal as a result of light
	with sufficiently short wavelength falling on it.
Vork function, Φ	The work function of a material is defined as the minimum
	amount of energy required to remove a free electron from
	<u>the surface</u> of a material
quare of the absolute	Probability density of finding the particle at a particular
nagnitude of the Wave	point, at a particular time.
unction, Ψ ²	
otential Barrier	A potential barrier is a region within which the potential
	energy of the particle is much higher than immediately
	<u>outside it.</u>
hoton	A <u>quantum of electromagnetic energy.</u>
onisation Energy	The ionization energy of an atom is the minimum energy
	required to remove an electron completely from the atom.
onisation	The process of creating charged particles.
ransmission Coefficient	The <u>probability</u> of the particle being <u>transmitted</u> .
Reflection Coefficient	The probability of the particle being reflected.
Chapter 19: Lasers and Semiconductors	
Spontaneous Emission A photon is emitted by an atom randomly and in any	

Compiled bv: Euaene Ho

	direction without any external stimulation.
Stimulated Emission	An incoming photon, whose energy is exactly equal to the
	excitation energy of the atom, induces the excited atom to
	fall to a lower energy level and releases a photon in the
	process. This photon released is similar to the one which
	induces its emission. The two photons are emitted at the
	same time and in the <u>same direction</u> .
Population Inversion	When there are more atoms in the excited state than in the
	ground state.
Intrinsic Semiconductor	A semiconductor without added impurities.
Extrinsic Semiconductor	A semiconductor with added impurities.
P-N Junction	A P-N Junction is a single semiconductor crystal that has
	been selectively doped so that one region is n-type material
	and the adjacent region is p-type material.
Stimulated Absorption	When an atom at a lower energy level absorbs a photon and
	moves to a higher energy level.
	Chapter 20: Nuclear Physics
Nucleon Number (Mass	The number of nucleons (protons and neutrons) in the
Number)	nucleus.
Proton Number (Atomic	The number of <u>protons</u> in the nucleus.
Number)	
Mass Defect	The <u>difference</u> between the <u>sum of the individual masses of</u>
	protons and neutrons and the mass of a nucleus.
Binding Energy	The amount of energy needed to split a nucleus into its
	individual nucleons.
Binding Energy per	Binding energy divided by the mass or nucleon number of
Nucleon	the nucleus.
Nuclear Fusion	Process by which nuclei with mass numbers lower than 56
	combine to form nuclei of higher mass numbers which are
	more stable.
Nuclear Fission	Process by which nuclei of mass numbers larger than 56
	break up to form lighter nuclei which are more stable.
Activity, A	The <u>number of atoms</u> of a radioactive substance that <u>decay</u>
	per unit time.
Decay constant	The probability of decay per nucleus per unit time.
Half life	Half life of a radioactive element is the time taken for a
	sample of atoms to decay to half their initial number.
Neutron Number	The number of <u>neutrons</u> in the nucleus.
Radioactivity	The <u>spontaneous emission</u> of α , β or γ <u>radiation by a parent</u>
	nucleus which results in itself being transformed into a
	completely different <u>daughter nucleus</u> .