

Example Candidate Responses

Cambridge International AS and A Level Physics

9702

Paper 4 – A Level Structured Questions

For examination from 2016

In order to help us develop the highest quality Curriculum Support resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of Cambridge Curriculum Support resources are very important to us.

https://www.surveymonkey.co.uk/r/GL6ZNJB

Do you want to become a Cambridge consultant and help us develop support materials?

Please follow the link below to register your interest.

http://www.cie.org.uk/cambridge-for/teachers/teacherconsultants/

Cambridge International Examinations retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party even for internal use within a Centre.

Contents

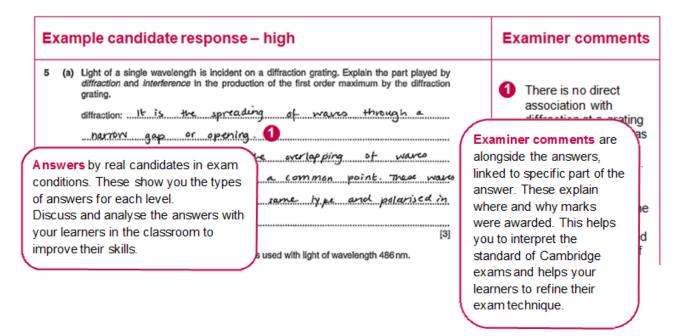
Contents	3
Introduction	4
Assessment at a glance	6
Paper 4 – A Level Structured Questions	8
Question 1	8
Question 4	14
Question 6	21
Question 12	25
Question 13	31

Introduction

The main aim of this booklet is to exemplify standards for those teaching Cambridge International AS & A Level Physics (9702), and to show how different levels of candidates' performance (high, middle and low) relate to the subject's curriculum and assessment objectives.

In this booklet candidate responses have been chosen to exemplify a range of answers. Each response is accompanied by a brief commentary explaining the strengths and weaknesses of the answers.

For each question, each response is annotated with a clear explanation of where and why marks were awarded or omitted. This, in turn, is followed by examiner comments on how the answer could have been improved. In this way it is possible for you to understand what candidates have done to gain their marks and what they will have to do to improve their answers. At the end there is a list of common mistakes candidates made in their answers for each question.


This document provides illustrative examples of candidate work. These help teachers to assess the standard required to achieve marks, beyond the guidance of the mark scheme. Some question types where the answer is clear from the mark scheme, such as short answers and multiple choice, have therefore been omitted.

The questions, mark schemes and pre-release material used here are available to download as a zip file from Teacher Support as the Example Candidate Responses Files. These files are:

Question Paper 22, June 2016						
Question paper	9702_s16_qp_22.pdf					
Mark scheme	9702_s16_ms_22.pdf					
Question Paper	33, June 2016					
Question paper	9702_s16_qp_33.pdf					
Mark scheme	9702_s16_ms_33.pdf					
Question Paper 42, June 2016						
Question paper	9702_s16_qp_42.pdf					
Mark scheme	9702_s16_ms_42.pdf					
Question Paper 52, June 2016						
Question paper	9702_s16_qp_52.pdf					
Mark scheme	9702_s16_ms_52.pdf					

Past papers, Examiner Reports and other teacher support materials are available on Teacher Support at https://teachers.cie.org.uk

How to use this booklet

How the candidate could have improved their answer

(a) The question was an application of diffraction a needed to apply their knowledge to the application interference needed to be applied to the production applications as well as learning basic theory is requ

This explains how the candidate could have improved their answer and helps you to interpret the standard of Cambridge exams and helps your learners to refine exam technique.

(b) The diffraction grating equation was used and the given data interpreted correctly. There was a mathematical error in the calculation and the final answer was not realistic. The candidate needed to be more familiar with likely values for applications of basic theory.

Common mistakes candidates made in this question

(a) Diffraction was described as the bending of light. diffraction is a wave property and hence diffraction a have passed through the diffraction element. The eff was not described for this specific example. This lists the common mistakes candidates made in answering each question. This will help your learners to avoid these mistakes at the exam and give them the best chance of achieving a high mark.

(b) The angle given on the diagram was used as the angle σ in the dimension grating equation. The distance d was quoted as the number of lines per mm N. There were power of ten errors converting d in metres to N in mm⁻¹.

Assessment at a glance

Candidates for Advanced Subsidiary (AS) certification take Papers 1, 2 and 3 in a single examination series.

Candidates who, having received AS certification, wish to continue their studies to the full Advanced Level qualification may carry their AS marks forward and take Papers 4 and 5 in the examination series in which they require certification.

Candidates taking the full Advanced Level qualification at the end of the course take all five papers in a single examination series.

Candidates may only enter for the papers in the combinations indicated above.

Candidates may not enter for single papers either on the first occasion or for resit purposes.

All components are externally assessed.

Component	Weighting		
Component	AS Level	A Level	
Paper 1 Multiple Choice	1 hour 15 minutes		
This paper consists of 40 multiple choice questions, all valuestions will be based on the AS Level syllabus contertainswer all questions.		31%	15.5%
Candidates will answer on an answer sheet.	[40 marks]		
Paper 2 AS Level Structured Questions	1 hour 15 minutes		
This paper consists of a variable number of questions of questions will be based on the AS Level syllabus conter answer all questions.		46%	23%
Candidates will answer on the question paper.	[60 marks]		
Paper 3 Advanced Practical Skills	2 hours		
This paper requires candidates to carry out practical wo The paper will consist of two experiments drawn from di The experiments may be based on physics not included but candidates will be assessed on their practical skills r knowledge of theory. Candidates will answer both quest	23%	11.5%	
Candidates will answer on the question paper.	[40 marks]		
Paper 4 A Level Structured Questions	2 hours		
This paper consists of a variable number of questions of questions will be based on the A Level syllabus but may material first encountered in the AS Level syllabus. Can questions.	require knowledge of	-	38.5%
Candidates will answer on the question paper.	[100 marks]		

Component	Weighting		
Component	AS Level	A Level	
Paper 5 Planning, Analysis and Evaluation 1 hour 15 minutes			
This paper consists of two questions of equal mark value based on the practical skills of planning, analysis and evaluation. The context of the questions may be outside the syllabus content, but candidates will be assessed on their practical skills of planning, analysis and evaluation rather than their knowledge of theory. Candidates will answer both questions.	-	11.5%	
Candidates will answer on the question paper. [30 marks]			

Teachers are reminded that the latest syllabus is available on our public website at **www.cie.org.uk** and Teacher Support at **https://teachers.cie.org.uk**

Paper 4 – A Level Structured Questions

Question 1

Example candidate response – high

Examiner comments

1 A binary star consists of two stars A and B that orbit one another, as illustrated in Fig. 1.1.

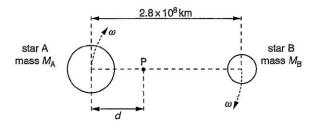


Fig. 1.1

The stars are in circular orbits with the centres of both orbits at point P, a distance d from the centre of star A.

(a) (i) Explain why the centripetal force acting on both stars has the same magnitude.

Because the centropetal force acting on both stars are provided by the gravitational force \mathbf{O} FG = $\frac{MAMB}{G_{VX}X^2} = m\omega^2 L^2$ = $m(\frac{2\pi}{V})^2 R^2$. The angular velocity ω and period T of both stars are the same. So the centripetal force and gravitational) The period of the orbit of the stars about point P is 4.0 years. forces, for both stars

Calculate the angular speed ω of the stars.

are the same. 2

$$\omega = \frac{9\pi}{T} = \frac{2\pi}{4 \times 365 \times 24 \times 3600}$$
= 4.98 × 10⁻⁸ rads-1

 $\omega = \frac{4.98 \times 10^{-8}}{\text{rads}^{-1}}$ [2]

1 The candidate clearly states what provides the centripetal force in this system of two stars.

Mark for (a) (i) = 2/2

- An equation is provided linking the two forces and the candidate explains why the two forces are the same.
- 3 A correct calculation is performed with the candidate clearly showing how the period *T* is converted from years to seconds.

Mark for (a) (ii) = 2/2

8

Example candidate response - high, continued **Examiner comments** (b) The separation of the centres of the stars is 2.8×10^8 km. The mass of star A is $M_{\rm A}$. The mass of star B is $M_{\rm B}$. The ratio $\frac{M_A}{M_D}$ is 3.0. (i) Determine the distance d. $:: \omega$, T, Fc are the same for A and B. May d = MB 102 (2.8 x 108 - d). The candidate uses the fact that the centripetal force on the two stars $\frac{MA}{MB} = \frac{2.8 \times 10^8 - d}{d} = 3$ is the same and performs a correct calculation. : d= 7x10 7.0 x107 km $d = \frac{7.0 \times 10^{7}}{100} \text{ km}$ Mark for (b) (i) = 3/3(ii) Use your answers in (a)(ii) and (b)(i) to determine the mass $M_{\rm B}$ of star B. Explain your working. 6 A correct starting MA 3 ME -3 ME equation is provided and correct distance (7×107) MA : 3MBX 7×107) = MB × (28×108-7×102) SedA+dB-> dB= S-dA dA = L-dB (MA-dA = M& dB values in metres inserted. However, the candidate has made an arithmetical error, as the correct answer $\frac{MA - dA = M}{MA - (L - dB) = MB - dB}$ $\frac{MB = \frac{MA - (L - dB)}{dB}}{dB}$ [Total: 10] should be 2.04×10^{29} kg. Mark for (b) (ii) = 2/3. MA = 3 .. MA = 3MB $\therefore G \frac{3Mb \cdot MB}{P^2} = \frac{Mb}{m} \omega^2 \mathcal{L}$ $6.67 \times 10^{-11} \times \frac{3MB}{(2.8 \times 10^8 \times 10^3)^2} = (4.98 \times 10^{-8})^2 \times (2.8 \times 10^8 \times 10^8)^2 \times (2.8 \times 10^8)^2$ Total marks awarded = 9 out of 10

How the candidate could have improved their answer

(b) (i) The candidate needed to make a correct calculation here.

Mark awarded = (a) (i) 2/2, (ii) 2/2 Mark awarded = (b) (i) 3/3, (ii) 2/3

Total marks awarded = 9 out of 10

Example candidate response - middle **Examiner comments** A binary star consists of two stars A and B that orbit one another, as illustrated in Fig. 1.1. $2.8 \times 10^{8} \text{km}$ star B star A mass MA mass MB d Fig. 1.1 The stars are in circular orbits with the centres of both orbits at point P, a distance d from the ceritre of star A. (a) (i) Explain why the centripetal force acting on both stars has the same magnitude. There is no reference to gravity in this answer. Mark for (a) (i) = 0/2(ii) The period of the orbit of the stars about point P is 4.0 years. Calculate the angular speed ω of the stars. A correct answer with a clear conversion of years into seconds. $\omega = \frac{4.98 \times 10^{-8}}{\text{rads}^{-1}}$ [2] Mark for (a) (ii) = 2/2

Example candidate response – middle, continued	Examiner comments
(b) The separation of the centres of the stars is 2.8×10^8 km. The mass of star A is $M_{\rm A}$. The mass of star B is $M_{\rm B}$. The ratio $\frac{M_{\rm A}}{M_{\rm B}}$ is 3.0.	
(i) Determine the distance d . $M_{A} \times d \times \omega^{2} = M_{B} \times (0.8 \times 10^{8} - d) \omega^{2}$,	
MA xdxy2 = (3.8x108-d) yd2 MB = 3.8x108-d.10-	A correct answer using the values provided.
3d +d = 2.8 x 108 7.0 x 107 km d =	Mark for (b) (i) = 3/3
(ii) Use your answers in (a)(ii) and (b)(i) to determine the mass M_B of star B. Explain your working. From $V = 361 \times 10^8 \text{ km}$.	The candidate makes a common error here, using the same distance for both the radius of the orbit of
$(7.0 \times 10^{7}) \times (40.98 \times 10^{8})^{2} = (6.67 \times 10^{11}) (M_{\odot})$	star B and the distance between the two stars.
$\frac{MA}{MB} = 3$ $\frac{2602.7}{2600} = 3.6 \times 10^{3} \text{ kg}$ $\frac{M_{B}}{M_{B}} = \frac{8.7 \times 10^{2}}{M_{B}} = \frac{10^{2}}{M_{B}} = 10^{2$	5 This candidate also incorrectly cancels the distances.
$(5.6 \times 10^3) = M_B 876$ [Total: 10]	Mark for (b) (ii) = 0/3 Total marks awarded =
J	5 out of 10

How the candidate could have improved their answer

- (a) (i) Some reference to gravitational forces was required here.
- **(b) (ii)** The candidate needed to insert the correct distance between the two stars for the gravitational force and understand the basic mathematics required to simplify the equations.

Mark awarded = (a) (i) 0/2, (ii) 2/2, Mark awarded = (b) (i) 3/3, (ii) 0/3

Total marks awarded 5 out of 10

Example candidate response - low

Examiner comments

A binary star consists of two stars A and B that orbit one another, as illustrated in Fig. 1.1.

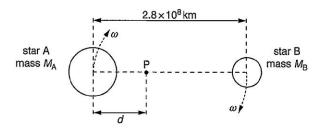
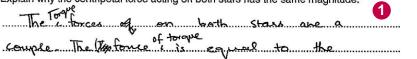



Fig. 1.1

The stars are in circular orbits with the centres of both orbits at point P, a distance d from the centre of star A.

(a) (i) Explain why the centripetal force acting on both stars has the same magnitude.

Centripetal force workship its The torque [2] forces = force on each one x the distance between (ii) The period of the orbit of the stars about point P is 4.0 years. Them, which are

Calculate the angular speed ω of the stars.

= 2兀

126 144000

$$T = 4 \times 365 \times 24 \times 60 \times 60$$

$$= \frac{2\pi}{126144000}$$

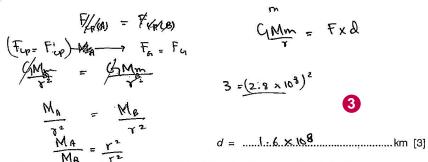
$$= 4.98 \times 10^{-8}$$

$$= 6.0 \times 10^{-8}$$

$$\omega = \dots 5...0. \times 10^{-8} \text{ rad s}^{-1} [2]$$

There is no reference to gravity in this answer. The forces involved are not torque forces.

Mark for (a) (i) = 0/2


A correct answer with a clear conversion from years to seconds. The candidate also correctly rounds the answer to two significant figures.

Mark for (a) (ii) = 2/2

Example candidate response - low, continued

(b) The separation of the centres of the stars is 2.8×10^8 km. The mass of star A is $M_{\rm A}$. The mass of star B is $M_{\rm B}$. The ratio $\frac{M_{\rm A}}{M_{\rm R}}$ is 3.0.

.(i) Determine the distance d.

(ii) Use your answers in (a)(ii) and (b)(i) to determine the mass $M_{\rm B}$ of star B. Explain your working.

$$\frac{(M)_{m}}{f} = (M)_{m}$$

$$\frac{F}{f} = m\omega^{2}r$$

$$m = \frac{F}{f} = \frac{F}{(5.0 \times 10^{2})^{2} \times 1.6 \times 10^{2}}$$

$$= \frac{F}{4 \times 10^{-7}}$$

$$M_{B} = \frac{F}{4 \times 10^{-7}}$$

$$\frac{F}{f} = \frac{F}{m\omega^{2}r}$$

$$\frac{F}{(5.0 \times 10^{-3})^{2} \times 1.6 \times 10^{2}}$$

$$\frac{F}{4 \times 10^{-7}}$$

$$\frac{F}{f} = \frac{F}{f}$$

$$\frac{F$$

Examiner comments

3 No marks are awarded for this section as the candidate has not made use of the fact that the centripetal forces on the two stars are the same.

Mark for (b) (i) = 0/3

The candidate inserts F for the force on star B and has not related this to the gravitational force. The equation for the centripetal force just uses a mass m, and in a correct solution M_B needs to be linked to the correct radius and similarly M_A to the correct radius.

Mark for (b) (ii) = 0/3

Total marks awarded = 2 out of 10

How the candidate could have improved their answer

The candidate required a better understanding of Newton's law of gravitation and its application to rotating stars.

- (a) (i) Here, there was no reference to gravitational forces.
- (b) (i) Required the candidate to realise that the centripetal forces on the two stars are the same.
- (b) (ii) The candidate needed to use their answers to (a) (ii) and (b) (i), as stated in the question.

Mark awarded = (a) (i) 0/2, (ii) 2/2 Mark awarded = (b) (i) 0/3, (ii) 0/3

Total marks awarded = 2 out of 10

Common mistakes candidates made in this question

- (a) (i) Many candidates did not link the forces on the rotating system of the stars to gravitational forces.
- (a) (ii) A common error was to perform an incorrect calculation from years into seconds. Working with 360 days in a year was a common error, along with using 60 rather than 3600 seconds in an hour.
- (b) (i) The common error in this section was to simply link the mass of star A or B to the incorrect radius of rotation.
- **(b) (ii)** A very common error in this section was to use Kepler's law, assuming that one star was at the centre of a rotating system.

Question 4

Example candidate response - high

Examiner comments

4 A metal block hangs vertically from one end of a spring. The other end of the spring is tied to a thread that passes over a pulley and is attached to a vibrator, as shown in Fig. 4.1.

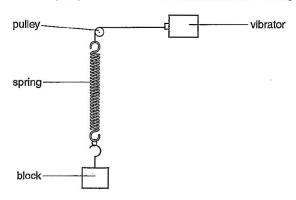


Fig. 4.1

(a) The vibrator is switched off. The metal block of mass 120 g is displaced vertically and then released. The variation with time t of the displacement y of the block from its equilibrium position is shown in Fig. 4.2.

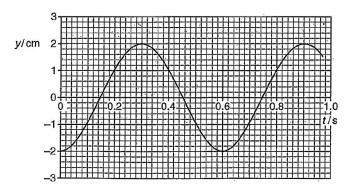


Fig. 4.2

For the vibrations of the block, calculate

(i) the angular frequency ω ,

$$\omega = \frac{2\hbar}{T} = \frac{2\hbar}{0.6}$$

 $\omega = 10.5 \quad \text{rads}^{-1} [2]$

1 The candidate starts with the correct equation and correctly reads the period from the graph as 0.6 seconds. They then perform a correct calculation obtaining a correct answer to three significant figures. An answer to two significant figures of 10 also scores the marks.

Mark for (a) (i) = 2/2

Example candidate response - high, continued

Examiner comments

(ii) the energy of the vibrations.

$$E = \frac{1}{2}m(\omega\sqrt{\pi_0^2 - \pi^2})^2$$

$$= \frac{1}{2}m\omega^2\pi_0^2$$

$$= \frac{1}{2} \times 120 \times 10^{-3} \times (10.47)^2 \times (2 \times 10^{-2})^2$$

$$= 2.631 \times 10^{-3}$$

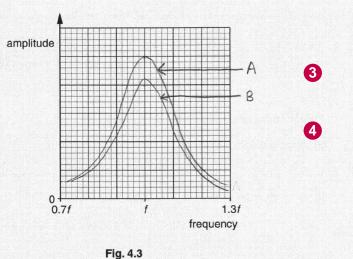
2 A correct starting equation is provided and then correct substitutions for the various terms are shown, leading to a correct solution.

The candidate has

drawn a clear line which has the correct

shape and a peak at f. One mark is not awarded because the line does not start at

0.7f nor finish at 1.3f.


Mark for (a) (ii) = 2/2

(b) The vibrator is now switched on.

The frequency of vibration is varied from 0.7f to 1.3f where f is the frequency of vibration of the block in (a).

energy =

For the block, complete Fig. 4.3 to show the variation with frequency of the amplitude of vibration. Label this line A. [3]

Mark for (b) = 2/3

The candidate has drawn a second line, labelled B, which is correctly below A along

all its length with a maximum at f.

Mark for (c) = 2/2

Mark 101 (0) - 2/2

8 out of 9

Total marks awarded =

Fig.

(c) Some light feathers are now attached to the block in (b) to increase air resistance.

The frequency of vibration is once again varied from 0.7f to 1.3f. The new amplitude of vibration is measured for each frequency.

On Fig. 4.3, draw a line to show the variation with frequency of the amplitude of vibration. Label this line B. [2]

[Total: 9]

How the candidate could have improved their answer

(b) The candidate needed to draw graph lines clearly starting from 0.7*f* to 1.3*f*, as required in the question, to gain full marks.

Mark awarded = (a) (i) 2/2, (ii) 2/2

Mark awarded = (b) 2/3

Mark awarded = (c) 2/2

Total marks awarded = 8 out of 9

Example candidate response - middle **Examiner comments** A metal block hangs vertically from one end of a spring. The other end of the spring is tied to a thread that passes over a pulley and is attached to a vibrator, as shown in Fig. 4.1. pulleyspring-(a) The vibrator is switched off. The metal block of mass 120g is displaced vertically and then released. The variation with time t of the displacement y of the block from its equilibrium position is shown in Fig. 4.2. y/cm Fig. 4.2 For the vibrations of the block, calculate equency ω , v = 10.67 Hz. $w = 2\pi f = 10.5$ (i) the angular frequency ω , \checkmark

1 A correct answer to three significant figures is given here.

Mark for (a) (i) = 2/2

Example candidate response - middle, continued **Examiner comments** (ii) the energy of the vibrations. $T.E = \frac{1}{3} m x_0^2 w^2$ = $\frac{1}{3} (0.10)(0 \times 10^2)^2 (10.5)^2$ = 0.646×103. A correct answer to three significant figures is given here. Mark for (a) (ii) = 2/2(b) The vibrator is now switched on. The frequency of vibration is varied from 0.7f to 1.3f where f is the frequency of vibration of the block in (a). The shape of graph For the block, complete Fig. 4.3 to show the variation with frequency of the amplitude of line A is not correct, so vibration. Label this line A. the answer is not awarded the shape mark. The peak is at f amplitude to within half a square Lm but the graph goes down to zero at 0.7f. A correct resonance 3 curve always has a positive value even down to zero Resonance 1 frequency. Mark for (b) = 1/30 0.7f 1.31 frequency / 4-Fig. 4.3 Curve B should always be below curve A but (c) Some light feathers are now attached to the block in (b) to increase air resistance. the two lines touch at 0.7f so no marks are The frequency of vibration is once again varied from 0.7f to 1.3f. The new amplitude of vibration is measured for each frequency. awarded for line B. On Fig. 4.3, draw a line to show the variation with frequency of the amplitude of vibration. Mark for (c) = 0/2Label this line B. [2] Total marks awarded = [Total: 9] 5 out of 9

How the candidate could have improved their answer

(b) & (c) The graph lines needed to be drawn with the correct overall general shape. The major error on both graphs occurred at low frequencies when both lines reached zero amplitude at 0.7 f. Line B should always be below Line A.

Mark awarded = (a) (i) 2/2 (ii) 2/2

Mark awarded = (b) 1/3

Mark awarded = (c) 0/2

Total marks awarded = 5 out of 9

Example candidate response - low

Examiner comments

4 A metal block hangs vertically from one end of a spring. The other end of the spring is tied to a thread that passes over a pulley and is attached to a vibrator, as shown in Fig. 4.1.

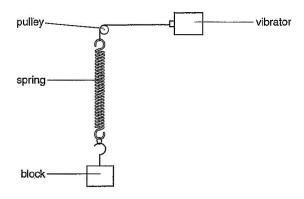


Fig. 4.1

(a) The vibrator is switched off.

The metal block of mass 120g is displaced vertically and then released. The variation with time *t* of the displacement *y* of the block from its equilibrium position is shown in Fig. 4.2.

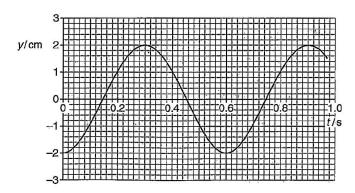
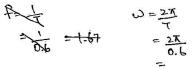



Fig. 4.2

For the vibrations of the block, calculate

(i) the angular frequency ω ,

 $\omega = \frac{1.67 \text{ 10.47}}{\text{rad s}^{-1}}$ [2]

A correct answer gaining full marks.

Mark for (a) (i) = 2/2

Examiner comments Example candidate response - low, continued (ii) the energy of the vibrations. 1 xmx w = 1 x0.12x (10.47)2 = 0.06x 109.6 = 6.58 The candidate starts with an incorrect physics equation. Mark for (a) (ii) = 0/2energy = $\frac{5.58}{1.58}$ [2] (b) The vibrator is now switched on. The frequency of vibration is varied from 0.7f to 1.3f where f is the frequency of vibration of the block in (a). For the block, complete Fig. 4.3 to show the variation with frequency of the amplitude of vibration. Label this line A. Only one line is labelled, which would amplitude be acceptable and the candidate could gain the mark for the second as it is assumed to be line A. This line is incorrect as it is the wrong shape and the peak is not at f. (Note, the second line is very faint, starting at 0, with 0.7f1.3f five peaks under line frequency B) Fig. 4.3 Mark for (b) = 0/3(c) Some light feathers are now attached to the block in (b) to increase air resistance. The frequency of vibration is once again varied from 0.7f to 1.3f. The new amplitude of Mark for (c) = 0/2vibration is measured for each frequency. On Fig. 4.3, draw a line to show the variation with frequency of the amplitude of vibration. Label this line B. Total marks awarded = 2 out of 9 [Total: 9]

How the candidate could have improved their answer

(a) (ii) This answer started with an incorrect physics equation and an amplitude term was missing.

The candidate needed a better understanding of the shape of resonance graphs to obtain marks in this section.

Mark awarded = (a) (i) 2/2, (ii) 0/2

Mark awarded = (b) 0/3

Mark awarded = (c) 0/2

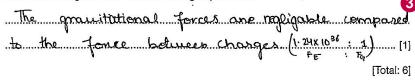
Total marks awarded = 2 out of 9

Paper 4 – A Level Structured Questions

Common mistakes candidates made in this question

- (a) (i) The majority of candidates were able to perform this calculation correctly, although many misread the graph.
- (a) (ii) The majority of candidates started with the correct equation, although the most common error was to not convert the mass of the block to kg or the amplitude to metres.
- **(b)** Candidates often did not draw a curve covering the range 0.7*f* to 1.3*f*, as requested by the question. Many curves started or ended with an amplitude of zero.
- **(c)** Many candidates were not awarded marks in this section because their line B touched line A at some point. The examiner needed to see a clear space between the two curves. Some candidates drew A and B lines which were straight rather than curves.

Question 6


Example candidate response – high

- (a) By reference to electric field lines, explain why, for points outside an isolated spherical conductor, the charge on the sphere may be considered to act as a point charge at its centre.
 - The electric field lines spread outwards radially and would meet at a point in the centre of the sphere. The electric field lines show the shrength of the electric field, which is the [2] concentrated in the centre. Thus at the charge is (b) Two isolated protons are separated in a vacuum by a distance x. considered to at

(i) Calculate the ratio

electric force between the two protons gravitational force between the two protons

(ii) By reference to your answer in (i), suggest why gravitational forces are not considered when calculating the force between charged particles.

Examiner comments

The candidate is awarded the first mark for stating that the field lines spread out radially. The candidate then writes incorrectly about the field lines meeting at the centre. To be awarded the second mark, they needed to say that the field lines appeared to meet at the centre.

Mark for (a) = 1/2

at its

centre.

2 Two correct equations with correct numerical values, followed by a correct calculation to greater than two significant figures, so this answer is awarded full marks.

Mark for (b) (i) = 3/3

The candidate refers to the answer in (b) (i) to explain correctly why the gravitational forces can be ignored.

Mark for (b) (ii) = 1/1

Total marks awarded = 5 out of 6

How the candidate could have improved their answer

(a) The candidate needed to realise that there are no field lines inside a spherical conductor and so should have considered the shape of the field lines outside the sphere.

Mark awarded = (a) 1/2 Mark awarded = (b) (i) 3/3, (ii) 1/1

Total marks awarded = 5 out of 6

Example candidate response - middle

- 6 (a) By reference to electric field lines, explain why, for points outside an isolated spherical conductor, the charge on the sphere may be considered to act as a point charge at its centre.
 - Outside spherical conductor, changes can move and home than is a huntant face on change with routent face, then is field acting on the change:
 - (b) Two isolated protons are separated in a vacuum by a distance x.
 - (i) Calculate the ratio

electric force between the two protons
gravitational force between the two protons

$$= \frac{(1.6 \times 10^{-19})^{2}}{4\pi (645 \times 10^{-19})} = \frac{6.67 \times 10^{-11} (1.67 \times 10^{-37})^{2}}{1}$$

$$= \frac{(1.6 \times 10^{-19})^{2}}{4\pi (6.65 \times 10^{-19})} \times \frac{1}{6.67 \times 10^{-11} (1.67 \times 10^{-37})^{2}}$$

$$= 1.24 \times 10^{36}, (34)$$

(ii) By reference to your answer in (i), suggest why gravitational forces are not considered when calculating the force between charged particles.

.H.ù	tw	.Inall	compared	to	electric	fara	.ind	rafio	i l.	.big	3	
	•••••					•••••				,,,,,,,,,,,		[1]

[Total: 6]

Examiner comments

1 The candidate makes no reference to the properties of field lines outside a spherical conductor and the answer is based on the forces on charges.

Mark for (a) = 0/2

A correct calculation with the values substituted in the equations clearly seen.

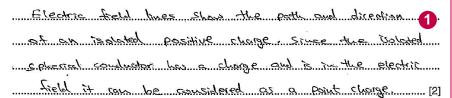
Mark for (b) (i) = 3/3

3 A correct answer to this part of the question with a clear comparison between the two forces in a reference to the large ratio. 'Too small' is accepted as a measure of the size of the ratio.

Mark for (b) (ii) = 1/1

Total marks awarded = 4 out of 6

How the candidate could have improved their answer


(a) The candidate needed to refer to the field lines, as required by the question.

Mark awarded = (a) 0/2 Mark awarded = (b) (i) 3/3, (ii) 1/1

Total marks awarded = 4 out of 6

Example candidate response - low

6 (a) By reference to electric field lines, explain why, for points outside an isolated spherical conductor, the charge on the sphere may be considered to act as a point charge at its centre.

- (b) Two isolated protons are separated in a vacuum by a distance x.
 - (i) Calculate the ratio

electric force between the two protons gravitational force between the two protons

$$= \frac{k QQ_{2}}{x^{2}} = \frac{GMM_{2}}{x^{2}}$$

$$= \frac{k QQ_{2}}{x^{2}} \times \frac{x^{2}}{GMM_{2}}$$

$$= \frac{1}{4\pi E_{0}} \times (1.6 \times 10^{14})^{2}$$

$$= \frac{1}{6.67 \times 10^{-11} \times 2 (1.67 \times 10^{-27})} = \frac{2.3 \times 10^{48}}{2.2 \times 10^{-37}}$$

ratio = 1.03 [3]

(ii) By reference to your answer in (i), suggest why gravitational forces are not considered when calculating the force between charged particles.

Examiner comments

1 The initial statement is partially correct when considering field lines. There is no mention of the direction of the field lines outside the conductor.

Mark for (a) = 0/2

The initial equations for the ratio are correct and the candidate makes a correct substitution for the electric force. The substitution for the gravitational force has a missing power of 2 followed by an arithmetical error.

Mark for (b) (i) = 1/3

3 This follows on correctly from the answer to (b) (i), but the question states that the gravitational forces are ignored so the answer contradicts this.

Mark for (b) (ii) = 0/1

Total marks awarded = 1 out of 6

How the candidate could have improved their answer

(a) The candidate referred to the field lines here. However, the examiner expected to see some reference to the shape of the field lines which implies that the charge appears to be at the centre.

(b) (i) The candidate started with the correct equations and squared the electric charge. Rather than squaring the mass in the gravity calculation, however, the candidate replaced m squared with $2 \times m$. There was also a power of 10 error in the calculation of the electric force.

(b) (ii) This question should have alerted the candidate to the fact that the ratio of 1 calculated in (b) (i) was not correct.

Mark awarded = (a) 0/2 Mark awarded = (b) (i) 1/3, (ii) 0/1

Total marks awarded = 1 out of 6

Paper 4 – A Level Structured Questions

Common mistakes candidates made in this question

- (a) Very few candidates referred to the field lines outside the conductor and many candidates wrote about the field lines meeting at the centre. Since there are no field lines in a spherical conductor, they can only appear to meet at the centre.
- **(b) (i)** A number of candidates who started with the correct equations inserted $2 \times e$ for e^2 or $2 \times m$ for the mass of the proton squared. The other common error was to insert 1.66 rather than 1.67 for the mass of the proton.
- **(b) (ii)** Omitting to make a comparison between the gravitational force and the electric force was a common error. Many candidates simply stated that the gravitational force was small or was small because the mass of the proton was small. The question required an answer based on the answer to (b) (i), implying some comparison between the two forces.

Example candidate response - high

12 High-energy electrons collide with a metal target, producing X-ray photons.

The variation with wavelength of the intensity of the X-ray beam is illustrated in Fig. 12.1.

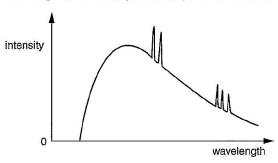
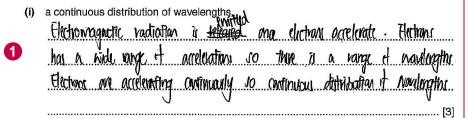
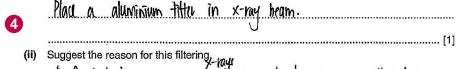



Fig. 12.1

(a) Explain why there is

(ii) a sharp cut-off at short wavelength,


2	for thatet	wavelength 1	acceluration.	¥	greatert.	
			2	••••••		
						[4

(iii) a series of peaks superimposed on the continuous distribution of wavelengths.

_	De-excitation of some electrons in target atom gives time spectra. Familing
3	Leme peaks on distribution graph:

(b) In the X-ray imaging of body structures, longer wavelength photons are frequently filtered out of the X-ray beam.

(i) State how this filtering is achieved.

budy:

[1]

Examiner comments

This answer is awarded the final two marks for saying that there are a range of accelerations leading to a range of wavelengths.

Mark for (a) (i) = 2/3

2 Candidates needed to explain that in one collision all the energy of the electron is given to one photon. While the candidate's statement is correct in general, there is no mention of one photon or one collision.

Mark for (a) (ii) = 0/2

3 A correct answer making reference to the de-excitation atoms in the target.

Mark for (a) (iii) = 1/1

4 A correct answer.

Aluminium sheet or foil would also have been acceptable.

Mark for (b) (i) = 1/1

5 A correct answer making reference to the X-rays absorbed in the aluminium, not in the body.

Mark for (b) (ii) = 1/1

Total marks awarded = 5 out of 8

Paper 4 – A Level Structured Questions

How the candidate could have improved their answer

- (a) (i) Here the candidate needed to introduce their answer by explaining the basic process of x-ray production, where whenever electrons/charged particles are accelerated or are stopped, this produces photons of electromagnetic radiation, i.e. X-ray photons are produced.
- (a) (ii) The idea of a single electron decelerating producing a single photon was missing in the answer.

Mark awarded = (a) (i) 2/3 Mark awarded = (a) (ii) 0/2 Mark awarded = (a) (iii) 1/1

Mark awarded = (b) (i) 1/1 Mark awarded = (b) (ii) 1/1

Mark awarded = (b) (ii) i/i

Total marks awarded = 5 out of 8

Example candidate response - middle

12 High-energy electrons collide with a metal target, producing X-ray photons.

The variation with wavelength of the intensity of the X-ray beam is illustrated in Fig. 12.1.

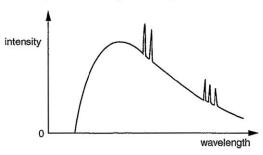


Fig. 12.1

(a) Explain why there is

(i) a continuous distribution of wavelengths, continuous compe of deaudoration of electrons when they hit metal plate so the X-rays emitted also had continuous distribution of wavelength.

For each acceleration flour is particular wavelength.

(ii) a sharp cut-off at short wavelength,

It is because of the maximum energy frequency

Clerkon withing single proton withing

the metal & emitting single proton

(iii) a series of peaks superimposed on the continuous distribution of wavelengths.

3 Ot is because of low impart time of between metal bythe election & also because of transition in netal when election with the metal.

(b) In the X-ray imaging of body structures, longer wavelength photons are frequently filtered out of the X-ray beam.

(i) State how this filtering is achieved.

4 An Aluminium Filter is placed in the way

of X-Ray beam. [1]

(ii) Suggest the reason for this filtering.

They lake every to penetrate through body skin they only increase the dose they donet part in image. [1]

[Total: 8]

Examiner comments

A correct answer, just missing a statement about the basic process taking place when X-rays are produced. Two marks are awarded for the range of accelerations giving rise to a range of wavelengths.

Mark for (a) (i) = 2/3

2 This answer almost gains the first mark. All it needs is a statement that all the energy is given to a single photon. There is also no mention of a single collision.

Mark for (a) (ii) = 0/2

The candidate needed to talk about the de-excitation of atoms in the target. The use of the word *transitions* would imply excitation.

Mark for (a) (iii) = 0/1

4 Aluminium filter is a correct answer.

Mark for (b) (i) = 1/1

5 Although the candidate does not state explicitly that long wavelength X-rays are absorbed in the body, mentioning an increased dose and not contributing to the image gains the mark.

Mark for (b) (ii) = 1/1

Total marks awarded = 4 out of 8

Paper 4 – A Level Structured Questions

How the candidate could have improved their answer

- (a) (i) The candidate just needed to explain the basic process of X-ray production to gain full marks here.
- (a) (ii) The examiner needed to see some reference to all the energy of a single electron being given to one photon in a single collision.
- (a) (iii) The candidate wrote about transitions in the metal but it was not clear that de-excitation is taking place; *transition* could be *excitation*.

Mark awarded = (a) (i) 2/3 Mark awarded = (a) (ii) 0/2 Mark awarded = (a) (iii) 0/1

Mark awarded = (b) (i) 1/1 Mark awarded = (b) (ii) 1/1

Total marks awarded = 4 out of 8

Examiner comments Example candidate response – low 12 High-energy electrons collide with a metal target, producing X-ray photons. The variation with wavelength of the intensity of the X-ray beam is illustrated in Fig. 12.1. intensity wavelength Fig. 12.1 This answer does not (a) Explain why there is explain the basic (i) a continuous distribution of wavelengths, process of X-ray production, that Electrons have various relocities electrons are High wavelength X ray beams are due to low lengty accelerated in the anode. Mark for (a) (i) = 0/3(ii) a sharp cut-off at short wavelength, There is no mention of Elections would have an energy value electrons producing photons. Mark for (a) (ii) = 0/2(iii) a series of peaks superimposed on the continuous distribution of wavelengths. When a series of electrons hit the metal This is the first time the emited from the Similar wavelingth electrons. (b) In the X-ray imaging of body structures, longer wavelength photons are frequently filtered out of the X-ray beam. word photon is mentioned but there is no indication that the photons are due to (i) State how this filtering is achieved. transitions in the metal By keeping a thin Aluminium sheet anode. between the body and beam. [1] Mark for (a) (iii) = 0/1(ii) Suggest the reason for this filtering. It absorbs high wavelength X ray beams which would be absorbed by the body [1] and not antibute to the image, [Total: 8] Mark for (b) = 2/2Total marks awarded = 2 out of 8

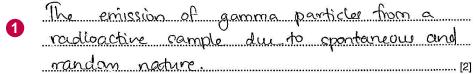
Paper 4 – A Level Structured Questions

How the candidate could have improved their answer

- (a) (i) & (ii) There was no mention of photons being produced here. The candidate needed to explain the basic process of X-ray production to gain marks in these two sections. When the candidate wrote about the electrons having a range of energies, it was not clear that the range of energies is prior to hitting the anode or in the anode.
- (a) (iii) This was the first time the word photon was mentioned but unfortunately the answer did not include any reference to the photons being produced by electron transitions in the anode.

Mark awarded = (a) (i) 0/3 Mark awarded = (a) (ii) 0/2 Mark awarded = (a) (iii) 0/1 Mark awarded = (b) (i) 1/1 Mark awarded = (b) (ii) 1/1

Total marks awarded = 2 out of 8


Common mistakes candidates made in this question

- (a) (i) Many candidates wrote about electrons having a range of energies or accelerations prior to hitting the target, when in practice they all have the same energy. On many occasions answers did not make it clear where the accelerations were taking place. Very few candidates mentioned the accelerations giving rise to photons.
- (a) (ii) Many candidates read the words 'cut-off at short wavelength' in the question and wrote about the photoelectric effect and X-ray photons emitting electrons from the target.
- (a) (iii) Candidates who wrote in general about the line spectra being due to electron transitions often did not mention that the transitions were in atoms in the target.
- (b) (i) A common error was to write about the use of lead grids for filtering.
- **(b) (ii)** Many candidates stated that the long wavelength X-rays were less penetrating, whereas the important factor about shielding is that the long wavelength X-rays are absorbed by the body and hence do not contribute to the image. They are therefore removed so that they do not increase the radiation dose of the patient.

Question 13

Example candidate response – high

13 (a) Explain what is meant by gamma radiation (γ -radiation).

(b) A source of gamma radiation is placed a fixed distance away from a detector and counter, as illustrated in Fig. 13.1.

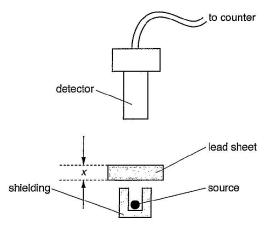
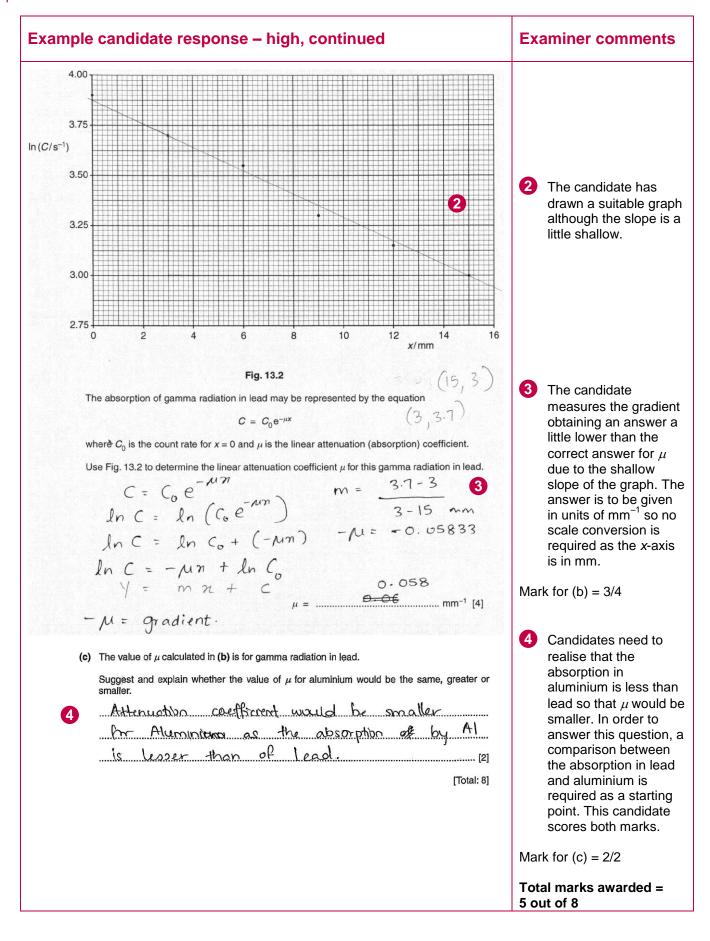


Fig. 13.1

A sheet of lead of thickness x is placed between the source and the detector.


The average count rate C, corrected for background, is recorded. This is repeated for different values of x.

The variation with thickness x of $\ln C$ is shown in Fig. 13.2.

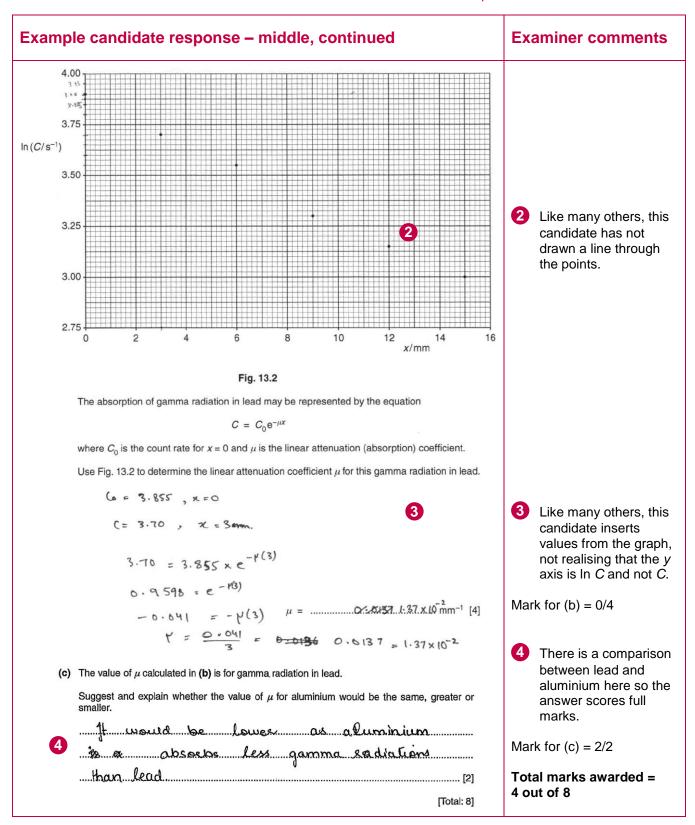
Examiner comments

The candidate first needs to state what gamma radiation is, i.e. photons of electromagnetic radiation. The second mark is for stating the origin of the radiation. Neither of the two available marks can be awarded for this answer.

Mark for (a) = 0/2

How the candidate could have improved their answer

- (a) The candidate needed to explain the term in italics by stating that gamma rays are electromagnetic waves produced in the nucleus of an atom.
- **(b)** The candidate needed to draw a straight line using all the points. The graph was a little shallow and a more carefully drawn straight line would have produced a better answer closer to the expected value 0.061.


Mark awarded = (a) 0/2

Mark awarded = (b) 3/4

Mark awarded = (c) 2/2

Total marks awarded = 5 out of 8

Example candidate response - middle **Examiner comments** 13 (a) Explain what is meant by gamma radiation (γ-radiation). A correct answer It is the electromagnetic water o scores both marks. Mark for (a) = 2/2released during the decay of (b) A source of gamma radiation is placed a fixed distance away from a detector and counter, as illustrated in Fig. 13.1. to counter detector lead sheet shielding source Fig. 13.1 A sheet of lead of thickness x is placed between the source and the detector. The average count rate C, corrected for background, is recorded. This is repeated for different The variation with thickness x of ln C is shown in Fig. 13.2.

How the candidate could have improved their answer

(b) The candidate needed to draw a suitable straight line through the points and then convert the equation into a form matching the straight line graph drawn.

Mark awarded = (a) 2/2

Mark awarded = (b) 0/4

Mark awarded = (c) 2/2

Total marks awarded = 4 out of 8

Example candidate response - low **Examiner comments** 13 (a) Explain what is meant by gamma radiation (γ -radiation). Electromagnetic cours entitled from a solioustive This answer scores the first mark for simple. recognising that gamma rays are electromagnetic (b) A source of gamma radiation is placed a fixed distance away from a detector and counter, as waves, but does not illustrated in Fig. 13.1. gain the origin mark. to counter Mark for (a) = 1/2detector lead sheet shielding source Fig. 13.1 A sheet of lead of thickness x is placed between the source and the detector. The average count rate C, corrected for background, is recorded. This is repeated for different values of x, The variation with thickness x of $\ln C$ is shown in Fig. 13.2.

Example candidate response - low, continued

Examiner comments

A mark is awarded for a suitable straight line.

Fig. 13.2

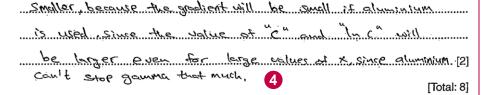
The absorption of gamma radiation in lead may be represented by the equation

$$C = C_0 e^{-\mu x}$$

where C_0 is the count rate for x = 0 and μ is the linear attenuation (absorption) coefficient.

Use Fig. 13.2 to determine the linear attenuation coefficient μ for this gamma radiation in lead.

$$\frac{4\pi c = 4xc_0}{1 + c_0} \qquad (3,3.7) \qquad (12,3.15)$$


$$\frac{1\pi c = -\mu x + c_0}{2 + c_0} \qquad m = \frac{y_2 \cdot y_1}{22 - x_1}$$

$$= \frac{315 - 3.7}{12 - 3} = \frac{-0.55}{9} = -0.06$$

$$\mu = \frac{-0.06}{12 - 3.15} \qquad mm^{-1} [4]$$

(c) The value of μ calculated in (b) is for gamma radiation in lead.

Suggest and explain whether the value of $\boldsymbol{\mu}$ for aluminium would be the same, greater or smaller.

The candidate
understands that the
slope of the graph is
required here, but then
obtains an answer to
one significant figure.
The candidate is not
awarded the significant
figure mark or the
accuracy mark.

Mark for (b) = 2/4

A typical answer in which there is no comparison with lead as required by the question.

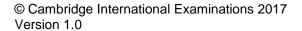
Mark for (c) = 0/2

Total marks awarded = 3 out of 8

Paper 4 – A Level Structured Questions

How the candidate could have improved their answer

- **(b)** The candidate should have used the whole of the graph to measure the slope and obtain an answer to at least two significant figures.
- **(c)** The candidate should have realised that a comparison between the absorption in lead and aluminium was required for the answer.


Mark awarded = (a) 1/2 Mark awarded = (b) 2/4 Mark awarded = (c) 0/2

Total marks awarded = 3 out of 8

Common mistakes candidates made in this question

- (a) The origin of the gamma rays was often missing from candidates' answers.
- **(b)** Many candidates did not draw a line on the graph but just used two points from the graph and then inserted them into the equation. The answer they obtained then depended upon the two points chosen. Many candidates drew a straight line graph then ignored the graph and used two of the points given. Some candidates, having drawn a straight line graph, did not use the whole graph to estimate the slope. Many candidates did not realise that the *y* axis is plotted as In *C* and not *C* and substituted In *C* values directly into the equation given in the text.
- (c) A comparison of aluminium and lead was often missing here.

Cambridge International Examinations 1 Hills Road, Cambridge, CB1 2EU, United Kingdom t: +44 1223 553554 f: +44 1223 553558 e: info@cie.org.uk www.cie.org.uk

