

Pseudocode Guide for Teachers

Cambridge International AS & A Level
Computer Science 9618
For examination from 2021

Version 1.4

Copyright © UCLES 2021
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge
Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES),
which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from
this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any
material that is acknowledged to a third party, even for internal use within a Centre.

In order to help us develop the highest quality resources, we are undertaking a continuous programme
of review; not only to measure the success of our resources but also to highlight areas for improvement
and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and
relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop
support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

http://www.surveymonkey.co.uk/r/GL6ZNJB
http://www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Contents

Introduction ... 1

How should teachers use this guide? ... 1
1 Pseudocode in examined components .. 2

1.1 Font style and size .. 2

1.2 Indentation .. 2

1.3 Case .. 2

1.4 Lines and line numbering .. 2

1.5 Comments... 3
2 Variables, constants and data types ... 4

2.1 Data Types.. 4

2.2 Literals .. 4

2.3 Identifiers .. 4

2.4 Variable declarations .. 5

2.5 Constants .. 5
2.6 Assignments ... 5

3 Arrays ... 6

3.1 Declaring arrays .. 6

3.2 Using arrays .. 6
4 User-defined data types ... 8

4.1 Defining user-defined data types .. 8

4.2 Using user-defined data types .. 10
5 Common operations ... 11

5.1 Input and output .. 11

5.2 Arithmetic operations .. 11

5.3 Relational operations .. 11
5.4 Logic operators ... 12

5.5 String functions and operations .. 12

5.6 Numeric functions ... 13
6 Selection .. 14

6.1 IF statements .. 14

6.2 CASE statements ... 15
7 Iteration (repetition) .. 16

7.1 Count-controlled (FOR) loops ... 16

7.2 Post-condition (REPEAT) loops.. 16

7.3 Pre-condition (WHILE) loops .. 17
8 Procedures and functions .. 18

8.1 Defining and calling procedures ... 18
8.2 Defining and calling functions ... 19

8.3 Passing parameters by value or by reference .. 20
9 File handling .. 21

9.1 Handling text files ... 21

9.2 Handling random files ... 22
10 Object-oriented Programming ... 24

10.1 Methods and Properties .. 24

10.2 Constructors and Inheritance.. 24
Index of symbols and keywords ... 25

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

1

Introduction

How should teachers use this guide?
We advise teachers to follow this guide in their teaching and make sure that learners are familiar with
the style presented here. This will enable learners to understand any pseudocode presented in
examination papers more easily. It will also give them a structure to follow so that they can present their
algorithms more clearly in pseudocode when required.

Learners should be encouraged to follow this guide in their examination answers or any other material
they present for assessment. By definition, pseudocode is not a programming language with a defined,
mandatory syntax. Any pseudocode presented by candidates will only be assessed for the logic of the
solution presented – where the logic is understood by the Examiner, and correctly solves the problem
addressed, the candidate will be given credit regardless of whether the candidate has followed the style
presented here. However, candidates are required to write pseudocode for questions that require
answers in pseudocode and not a programming language. Using a recommended style will, however,
enable the candidate to communicate their solution to the Examiner more effectively.

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

2

1. Pseudocode in examined components

The following information sets out how pseudocode will appear within the examined components and is
provided to allow you to give learners familiarity before the exam.

1.1 Font style and size

Pseudocode is presented in a monospaced (fixed-width) font such as Courier New. The size of the font will
be consistent throughout.

1.2 Indentation

Lines are indented (usually by three spaces) to indicate that they are contained within a statement in a
previous line. In cases where line numbering is used, this indentation may be omitted. Every effort will be
made to make sure that code statements are not longer than a line of text unless this is absolutely
necessary. Where necessary, continuation lines will be aligned to maximise readability.

1.3 Case

Keywords are in upper-case, e.g. IF, REPEAT, PROCEDURE. (Different keywords are explained in
later sections of this guide.)

Identifiers are in mixed case (sometimes referred to as camelCase or Pascal case) with upper-case letters
indicating the beginning of new words, for example NumberOfPlayers.

Meta-variables – symbols in the pseudocode that should be substituted by other symbols are enclosed in
angled brackets < > (as in Backus-Naur Form). This is also used in this guide.

1.4 Lines and line numbering
Where it is necessary to number the lines of pseudocode so that they can be referred to, line numbers are
presented to the left of the pseudocode with sufficient space to indicate clearly that they are not part of the
pseudocode statements.

Line numbers are consecutive, unless numbers are skipped to indicate that part of the code is missing. This
will also be clearly stated.

Each line representing a statement is numbered. However, when a statement runs over one line of text, the
continuation lines are not numbered.

Example – meta-variables
 REPEAT
 <statement(s)>
 UNTIL <condition>

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

3

1.5 Comments

Comments are preceded by two forward slashes //. The comment continues until the end of the line. For
multi-line comments, each line is preceded by //.

Normally the comment is on a separate line before, and at the same level of indentation as, the code it refers
to. Occasionally, however, a short comment that refers to a single line may be at the end of the line to which
it refers.

Example – comments
// this procedure swaps
// values of X and Y
PROCEDURE SWAP(BYREF X : INTEGER, Y : INTEGER)

 Temp ← X // temporarily store X

 X ← Y

 Y ← Temp
ENDPROCEDURE

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

4

2. Variables, constants and data types

2.1. Data Types
The following keywords are used to designate some basic data types:

• INTEGER a whole number

• REAL a number capable of containing a fractional part

• CHAR a single character

• STRING a sequence of zero or more characters

• BOOLEAN the logical values TRUE and FALSE

• DATE a valid calendar date

2.2. Literals

Literals of the above data types are written as follows:

• Integer Written as normal in the denary system, e.g. 5, -3

• Real Always written with at least one digit on either side of the decimal point, zeros being
added if necessary, e.g. 4.7, 0.3, -4.0, 0.0

• Char A single character delimited by single quotes e.g. ꞌxꞌ, ꞌCꞌ, ꞌ@ꞌ

• String Delimited by double quotes. A string may contain no characters (i.e. the empty string)
e.g. "This is a string", ""

• Boolean TRUE, FALSE

• Date

This will normally be written in the format dd/mm/yyyy. However, it is good practice to
state explicitly that this value is of data type DATE and to explain the format (as the
convention for representing dates varies across the world).

2.3. Identifiers
Identifiers (the names given to variables, constants, procedures and functions) are in mixed case. They can
only contain letters (A–Z, a–z), digits (0–9) and the underscore character (_). They must start with a letter and
not a digit. Accented letters should not be used.

It is good practice to use identifier names that describe the variable, procedure or function they refer to. Single
letters may be used where these are conventional (such as i and j when dealing with array indices, or X and
Y when dealing with coordinates) as these are made clear by the convention.

Keywords identified elsewhere in this guide should never be used as variables.

Identifiers should be considered case insensitive, for example, Countdown and CountDown should not
be used as separate variables.

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

5

2.4. Variable declarations
It is good practice to declare variables explicitly in pseudocode.

Declarations are made as follows:

DECLARE <identifier> : <data type>

2.5. Constants

It is good practice to use constants if this makes the pseudocode more readable, as an identifier is more
meaningful in many cases than a literal. It also makes the pseudocode easier to update if the value of the
constant changes.

Constants are normally declared at the beginning of a piece of pseudocode (unless it is desirable to restrict
the scope of the constant).

Constants are declared by stating the identifier and the literal value in the following format:

CONSTANT <identifier> = <value>

Only literals can be used as the value of a constant. A variable, another constant or an expression must
never be used.

2.6. Assignments

The assignment operator is ← .

Assignments should be made in the following format:

<identifier> ← <value>

The identifier must refer to a variable (this can be an individual element in a data structure such as an array or
a user defined data type). The value may be any expression that evaluates to a value of the same data type
as the variable.

Example – variable declarations
DECLARE Counter : INTEGER
DECLARE TotalToPay : REAL
DECLARE GameOver : BOOLEAN

Example – CONSTANT declarations
CONSTANT HourlyRate = 6.50
CONSTANT DefaultText = "N/A"

Example – assignments
Counter ← 0
Counter ← Counter + 1
TotalToPay ← NumberOfHours * HourlyRate

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

6

3. Arrays

3.1. Declaring arrays

Arrays are considered to be fixed-length structures of elements of identical data type, accessible by
consecutive index (subscript) numbers. It is good practice to explicitly state what the lower bound of the
array (i.e. the index of the first element) is because this defaults to either 0 or 1 in different systems.
Generally, a lower bound of 1 will be used.

Square brackets are used to indicate the array indices.

A One-dimensional array is declared as follows:

 DECLARE <identifier>:ARRAY[<lower>:<upper>] OF <data type>

A two-dimensional array is declared as follows:

 DECLARE <identifier>:ARRAY[<lower1>:<upper1>,<lower2>:<upper2>] OF <data type>

3.2. Using arrays

Array index values may be literal values or expressions that evaluate to a valid integer value.

Arrays can be used in assignment statements (provided they have same size and data type). The following is
therefore allowed:

A statement should not refer to a group of array elements individually. For example, the following
construction should not be used.

StudentNames [1 TO 30] ← ""

Syllabus requirements

The Cambridge International AS & A Level syllabus (9618) requires candidates to understand and
use both one-dimensional and two-dimensional arrays.

Example – array declarations
DECLARE StudentNames : ARRAY[1:30] OF STRING
DECLARE NoughtsAndCrosses : ARRAY[1:3,1:3] OF CHAR

Example – Accessing individual array elements
StudentNames[1] ← "Ali"
NoughtsAndCrosses[2,3] ← ꞌXꞌ
StudentNames[n+1] ← StudentNames[n]

Example – Accessing a complete array
SavedGame ← NoughtsAndCrosses

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

7

Instead, an appropriate loop structure is used to assign the elements individually. For example:

Example – assigning a group of array elements

FOR Index ← 1 TO 30
 StudentNames[Index] ← ""

NEXT Index

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

8

4. User-defined data types

4.1. Defining user-defined data types
Non-composite data type – Enumerated

A user-defined non-composite data type with a list of possible values is called an enumerated data type.
The enumerated type should be declared as follows:

TYPE <identifier> = (value1, value2, value3, ...)

Non-composite data type – Pointer

A user-defined non-composite data type referencing a memory location is called a pointer.
The pointer should be declared as follows:

TYPE <identifier> = ^<data type>

The ^ shows that the variable is a pointer and the data type indicates the type of the data
stored in the memory location.

Declaration of a variable of pointer type does not require the ^ (caret) symbol to be used.

Syllabus requirements

The AS & A Level (9618) syllabus requires candidates to understand that data structures that are not
available in a particular programming language need to be constructed from the data structures that
are built-in within the language. User-defined data types need to be defined. The syllabus requires
candidates to use and define non-composite data types such as enumerated and pointer and
composite data types such as record, set, class/object. Abstract Data Types (ADTs) stack, queue,
linked list, dictionary and binary tree are also defined as composite data types.

Example – declaration of enumerated type
This enumerated type holds data about seasons of the year.

TYPE Season = (Spring, Summer, Autumn, Winter)

Example – declarations of pointer type

TYPE TIntPointer = ^INTEGER

TYPE TCharPointer = ^CHAR

Example – declaration of a pointer variable
DECLARE MyPointer : TIntPointer

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

9

Composite data type

A composite data type is a collection of data that can consist of different data types, grouped under one
identifier. The composite type should be declared as follows:

TYPE <identifier1>

DECLARE <identifier2> : <data type>
TECLARE <identifier3> : <data type>
...

ENDTYPE

Example – declaration of composite type
This user-defined data type holds data about a student.

TYPE Student

 DECLARE LastName : STRING
 DECLARE FirstName : STRING

 DECLARE DateOfBirth : DATE

 DECLARE YearGroup : INTEGER
 DECLARE FormGroup : CHAR

ENDTYPE

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

10

4.2. Using user-defined data types

When a user-defined data type has been defined it can be used in the same way as any other data type in
declarations.

Variables of a user-defined data type can be assigned to each other. Individual data items are accessed
using dot notation.

Example – using user-defined data types

This pseudocode uses the user-defined types Student, Season and TIntPointer defined in
the previous section.

DECLARE Pupil1 : Student
DECLARE Pupil2 : Student
DECLARE Form : ARRAY[1:30] OF Student
DECLARE ThisSeason : Season
DECLARE NextSeason : Season
DECLARE MyPointer : TIntPointer

Pupil1.LastName ← "Johnson"
Pupil1.Firstname ← "Leroy"
Pupil1.DateOfBirth ← 02/01/2005
Pupil1.YearGroup ← 6
Pupil1.FormGroup ← ꞌAꞌ

Pupil2 ← Pupil1

FOR Index ← 1 TO 30
Form[Index].YearGroup ← Form[Index].YearGroup + 1

NEXT Index

ThisSeason ← Spring
MyPointer ← ^ThisSeason
NextSeason ← MyPointer^ + 1
// access the value stored at the memory address

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

11

5. Common operations

5.1. Input and output

Values are input using the INPUT command as follows:

INPUT <identifier>

The identifier should be a variable (that may be an individual element of a data structure such as an array, or
a custom data type).

Values are output using the OUTPUT command as follows:

OUTPUT <value(s)>

Several values, separated by commas, can be output using the same command.

5.2. Arithmetic operations

Standard arithmetic operator symbols are used:

+ Addition

- Subtraction

* Multiplication

/ Division (The resulting value should be of data type REAL, even if the operands are integers.)

DIV Integer division: Used to find the quotient (integer number before the decimal point) after division.

MOD or Modulus: The remainder that is left over when one number is divided by another.

Multiplication and division have higher precedence over addition and subtraction (this is the normal
mathematical convention). However, it is good practice to make the order of operations in complex
expressions explicit by using parentheses.

5.3. Relational operations

The following symbols are used for relational operators (also known as comparison operators):

> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
= Equal to
<> Not equal to

The result of these operations is always of data type BOOLEAN.

In complex expressions it is advisable to use parentheses to make the order of operations explicit.

Example – INPUT and OUTPUT statements
INPUT Answer
OUTPUT Score
OUTPUT "You have ", Lives, " lives left"

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

12

5.4. Logic operators

The only logic operators (also called relational operators) used are AND, OR and NOT. The operands and
results of these operations are always of data type BOOLEAN.

In complex expressions it is advisable to use parentheses to make the order of operations explicit.

5.5. String functions and operations

Each function returns an error if the function call is not properly formed.

Syllabus requirements

The AS & A Level (9618) syllabus specifically requires candidates to know string manipulation
functions in their chosen programming language. Pseudocode string manipulation functions will
always be provided in examinations. Some basic string manipulation functions are given here.

RIGHT(ThisString : STRING, x : INTEGER) RETURNS STRING
returns rightmost x characters from ThisString

Example: RIGHT("ABCDEFGH", 3) returns "FGH"

LENGTH(ThisString : STRING) RETURNS INTEGER
returns the integer value representing the length of ThisString

Example: LENGTH("Happy Days") returns 10

MID(ThisString : STRING, x : INTEGER, y : INTEGER) RETURNS STRING
returns a string of length y starting at position x from ThisString

Example: MID("ABCDEFGH", 2, 3) returns "BCD"

LCASE(ThisChar : CHAR) RETURNS CHAR
returns the character value representing the lower-case equivalent of ThisChar
If ThisChar is not an upper-case alphabetic character, it is returned unchanged.

Example: LCASE('W') returns 'w'

UCASE(ThisChar : CHAR) RETURNS CHAR
returns the character value representing the upper-case equivalent of ThisChar
If ThisChar is not a lower-case alphabetic character, it is returned unchanged.

Example: UCASE('h') returns 'H'

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

13

In pseudocode, the operator & is used to concatenate (join) two strings.

Example: "Summer" & " " & "Pudding" produces "Summer Pudding"

Where string operations (such as concatenation, searching and splitting) are used in a programming
language, these should be explained clearly, as they vary considerably between systems.

Where functions in programming languages are used to format numbers as strings for output, their use should
also be explained.

5.6. Numeric functions

INT(x : REAL) RETURNS INTEGER
returns the integer part of x

Example: INT(27.5415) returns 27

RAND(x : INTEGER) RETURNS REAL
returns a random real number in the range 0 to x (not inclusive of x)

Example: RAND(87) may return 35.43

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

14

6. Selection

6.1. IF statements

IF statements may or may not have an ELSE clause.

IF statements without an ELSE clause are written as follows:

IF <condition> THEN
 <statement(s)>
ENDIF

IF statements with an ELSE clause are written as follows:

IF <condition> THEN

<statement(s)>
 ELSE

<statement(s)>
ENDIF

Note, due to space constraints, the THEN and ELSE clauses may only be indented by two spaces rather than
three. (They are, in a sense, a continuation of the IF statement rather than separate statements).

Example – nested IF statements
IF ChallengerScore > ChampionScore THEN

 IF ChallengerScore > HighestScore THEN
 OUTPUT ChallengerName, " is champion and highest scorer"
 ELSE
 OUTPUT ChallengerName, " is the new champion"
 ENDIF
 ELSE
 OUTPUT ChampionName, " is still the champion"
 IF ChampionScore > HighestScore THEN

 OUTPUT ChampionName, " is also the highest scorer"
 ENDIF
 ENDIF

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

15

6.2. CASE statements

CASE statements allow one out of several branches of code to be executed, depending on the value of a
variable.

CASE statements are written as follows:

CASE OF <identifier>
 <value 1> : <statement1>

 <statement2>
...

 <value 2> : <statement1>
 <statement2>

...
 ...
ENDCASE

An OTHERWISE clause can be the last case:

CASE OF <identifier>
 <value 1> : <statement1>

 <statement2>
...

 <value 2> : <statement1>
 <statement2>

...
OTHERWISE : <statement1>

 <statement2>
...

ENDCASE

Each value may be represented by a range, for example:

<value1> TO <value2> : <statement1>

 <statement2>
 ...

Note that the CASE clauses are tested in sequence. When a case that applies is found, its statement is
executed and the CASE statement is complete. Control is passed to the statement after the ENDCASE. Any
remaining cases are not tested.

If present, an OTHERWISE clause must be the last case. Its statement will be executed if none of the
preceding cases apply.

Example – formatted CASE statement
INPUT Move
CASE OF Move

 ꞌWꞌ : Position ← Position − 10
 ꞌSꞌ : Position ← Position + 10
 ꞌAꞌ : Position ← Position − 1
 ꞌDꞌ : Position ← Position + 1
 OTHERWISE : CALL Beep

ENDCASE

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

16

7. Iteration (repetition)

7.1. Count-controlled (FOR) loops
Count-controlled loops are written as follows:

FOR <identifier> ← <value1> TO <value2>

<statement(s)>
NEXT <identifier>

The identifier must be a variable of data type INTEGER, and the values should be expressions that evaluate
to integers.

The variable is assigned each of the integer values from value1 to value2 inclusive, running the statements
inside the FOR loop after each assignment. If value1 = value2 the statements will be executed once, and if
value1 > value2 the statements will not be executed.

It is good practice to repeat the identifier after NEXT, particularly with nested FOR loops.

An increment can be specified as follows:

FOR <identifier> ← <value1> TO <value2> STEP <increment>

<statement(s)>
NEXT <identifier>

The increment must be an expression that evaluates to an integer. In this case the identifier will be
assigned the values from value1 in successive increments of increment until it reaches value2. If it goes
past value2, the loop terminates. The increment can be negative.

7.2. Post-condition (REPEAT) loops

Post-condition loops are written as follows:

REPEAT
<statement(s)>

UNTIL <condition>

The condition must be an expression that evaluates to a Boolean.

Example – nested FOR loops

Total ← 0
FOR Row ← 1 TO MaxRow

 RowTotal ← 0

 FOR Column ← 1 TO 10

 RowTotal ← RowTotal + Amount[Row, Column]
 NEXT Column

 OUTPUT "Total for Row ", Row, " is ", RowTotal

 Total ← Total + RowTotal
NEXT Row
OUTPUT "The grand total is ", Total

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

17

The statements in the loop will be executed at least once. The condition is tested after the statements are
executed and if it evaluates to TRUE the loop terminates, otherwise the statements are executed again.

7.3. Pre-condition (WHILE) loops

Pre-condition loops are written as follows:

WHILE <condition>
<statement(s)>

ENDWHILE

The condition must be an expression that evaluates to a Boolean.

The condition is tested before the statements, and the statements will only be executed if the condition
evaluates to TRUE. After the statements have been executed the condition is tested again. The loop
terminates when the condition evaluates to FALSE.

The statements will not be executed if, on the first test, the condition evaluates to FALSE.

Example – REPEAT UNTIL loop
REPEAT

 OUTPUT "Please enter the password"

 INPUT Password
UNTIL Password = "Secret"

Example – WHILE loop
WHILE Number > 9

 Number ← Number – 9
ENDWHILE

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

18

8. Procedures and functions

8.1. Defining and calling procedures

A procedure with no parameters is defined as follows:

PROCEDURE <identifier>
<statement(s)>

ENDPROCEDURE

A procedure with parameters is defined as follows:

PROCEDURE <identifier>(<param1> : <data type>, <param2> : <data type>...)
<statement(s)>

ENDPROCEDURE

The <identifier> is the identifier used to call the procedure. Where used, param1, param2 etc. are
identifiers for the parameters of the procedure. These will be used as variables in the statements of the
procedure.

Procedures defined as above should be called as follows, respectively:

CALL <identifier>

CALL <identifier>(Value1, Value2, ...)

These calls are complete program statements.

When parameters are used, Value1, Value2... must be of the correct data type and in the same
sequence as in the definition of the procedure.
Unless otherwise stated, it should be assumed that parameters are passed by value. (See section 8.3).

Syllabus requirements

The definition and use of procedures and functions is explicitly required in the AS & A Level (9618)
syllabus. Any pseudocode functions used in an examination will be defined.

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

19

8.2. Defining and calling functions

Functions operate in a similar way to procedures, except that in addition they return a single value to the point
at which they are called. Their definition includes the data type of the value returned.

A function with no parameters is defined as follows:

FUNCTION <identifier> RETURNS <data type>

<statement(s)>
ENDFUNCTION

A function with parameters is defined as follows:

 FUNCTION <identifier>(<param1> : <data type>,
 <param2> : <data type>…) RETURNS <data type>
 <statement(s)>
 ENDFUNCTION

The keyword RETURN is used as one of the statements within the body of the function to specify the value to
be returned. Normally, this will be the last statement in the function definition, however, if the RETURN
statement is in the body of the function its execution is immediate and any subsequent lines of code are
omitted.

Because a function returns a value that is used when the function is called, function calls are not complete
program statements. The keyword CALL should not be used when calling a function. Functions should only
be called as part of an expression. When the RETURN statement is executed, the value returned replaces the
function call in the expression and the expression is then evaluated.

Example – definition and use of procedures with and without parameters
PROCEDURE DefaultSquare
 CALL Square(100)
ENDPROCEDURE

PROCEDURE Square(Size : INTEGER)
 FOR Side ← 1 TO 4
 CALL MoveForward(Size)
 CALL Turn(90)
 NEXT Side
ENDPROCEDURE

IF Size = Default THEN

 CALL DefaultSquare
 ELSE
 CALL Square(Size)

ENDIF

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

20

8.3. Passing parameters by value or by reference

To specify whether a parameter is passed by value or by reference, the keywords BYVAL and BYREF precede
the parameter in the definition of the procedure. If there are several parameters passed by the same method,
the BYVAL or BYREF keyword need not be repeated.

If the method for passing parameters is not specified, passing by value is assumed. How this should
be called and how it operates has already been explained in Section 8.1.

Parameters should not be passed by reference to a function.

Example – definition and use of a function
FUNCTION Max(Number1 : INTEGER, Number2 : INTEGER) RETURNS INTEGER

 IF Number1 > Number2 THEN

 RETURN Number1

 ELSE

 RETURN Number2

 ENDIF

ENDFUNCTION

OUTPUT "Penalty Fine = ", Max(10, Distance*2)

Example – passing parameters by reference
PROCEDURE SWAP(BYREF X : INTEGER, Y : INTEGER)

 Temp ← X

 X ← Y

 Y ← Temp

ENDPROCEDURE

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

21

9. File handling

9.1. Handling text files
Text files consist of lines of text that are read or written consecutively as strings.

A file must be opened in a specified mode before any file operations are attempted. This is written
as follows:

OPENFILE <file identifier> FOR <file mode>

The file identifier may be a literal string containing the file names, or a variable of type STRING that has been
assigned the file name.

The following file modes are used:

• READ for data to be read from the file
• WRITE for data to be written to the file. A new file will be created and any existing data in the

file will be lost.

• APPEND for data to be added to the file, after any existing data.

A file should be opened in only one mode at a time.

Data is read from the file (after the file has been opened in READ mode) using the READFILE command as
follows:

READFILE <file identifier>, <variable>

The variable should be of data type STRING. When the command is executed, the next line of
text in the file is read and assigned to the variable.

The function EOF is used to test whether there are any more lines to be read from a given file. It is called as
follows:

EOF(<file identifier>)

This function returns TRUE if there are no more lines to read (or if an empty file has been opened in READ
mode) and FALSE otherwise.

Data is written into the file (after the file has been opened in WRITE or APPEND mode) using the
WRITEFILE command as follows:

WRITEFILE <file identifier> , <data>

Files should be closed when they are no longer needed using the CLOSEFILE command as follows:

CLOSEFILE <file identifier>

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

22

9.2. Handling random files
Random files contain a collection of data, normally as records of fixed length. They can be thought of as
having a file pointer which can be moved to any location or address in the file. The record at that location
can then be read or written.

Random files are opened using the RANDOM file mode as follows:

OPENFILE <file identifier> FOR RANDOM

As with text files, the file identifier will normally be the name of the file.

The SEEK command moves the file pointer to a given location:

SEEK <file identifier>, <address>

The address should be an expression that evaluates to an integer which indicates the location of a record to
be read or written. This is usually the number of records from the beginning of the file. It is good practice to
explain how the addresses are computed.

The command GETRECORD should be used to read the record at the file pointer:

GETRECORD <file identifier>, <variable>

When this command is executed, the record that is read is assigned to the variable which must be of
the appropriate data type for that record (usually a user-defined type).

The command PUTRECORD is used to write a record into the file at the file pointer:

PUTRECORD <file identifier>, <variable>

When this command is executed, the data in the variable is inserted into the record at the file pointer. Any
data that was previously at this location will be replaced.

Example – handling text files

This example uses the operations together, to copy all the lines from FileA.txt to FileB.txt,
replacing any blank lines by a line of dashes.

DECLARE LineOfText : STRING
OPENFILE "FileA.txt" FOR READ
OPENFILE "FileB.txt" FOR WRITE
WHILE NOT EOF("FileA.txt")
 READFILE "FileA.txt", LineOfText
 IF LineOfText = "" THEN
 WRITEFILE "FileB.txt", " ---------------------------- "
 ELSE
 WRITEFILE "FileB.txt", LineOfText
 ENDIF
ENDWHILE
CLOSEFILE "FileA.txt"
CLOSEFILE "FileB.txt"

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

23

Example – handling random files

The records from positions 10 to 20 of a file StudentFile.Dat are moved to the next position and
a new record is inserted into position 10. The example uses the user-defined type Student defined
in Section 4.1.

DECLARE Pupil : Student
DECLARE NewPupil : Student
DECLARE Position : INTEGER

NewPupil.LastName ← "Johnson"
NewPupil.Firstname ← "Leroy"
NewPupil.DateOfBirth ← 02/01/2005
NewPupil.YearGroup ← 6
NewPupil.FormGroup ← ꞌAꞌ

OPENFILE "StudentFile.Dat" FOR RANDOM

FOR Position ← 20 TO 10 STEP -1
SEEK "StudentFile.Dat", Position
GETRECORD "StudentFile.Dat", Pupil
SEEK "StudentFile.Dat", Position + 1
PUTRECORD "StudentFile.Dat", Pupil

NEXT Position

SEEK "StudentFile.Dat", 10
PUTRECORD "StudentFile.Dat", NewPupil

CLOSEFILE "StudentFile.dat"

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

24

10. Object-oriented Programming

10.1. Methods and Properties

Methods and properties can be assumed to be public unless otherwise stated. Where the access level is
relevant to the question, it will be explicit in the code using the keywords PUBLIC or PRIVATE.

Methods will be called using object methods, for example:

Player.SetAttempts(5)
OUTPUT Player.GetAttempts()

10.2. Constructors and Inheritance

Constructors will be procedures with the name NEW.

CLASS Pet
 PRIVATE Name : STRING
 PUBLIC PROCEDURE NEW(GivenName : STRING)
 Name ← GivenName
 ENDPROCEDURE
ENDCLASS

Inheritance is denoted by the INHERITS keyword; superclass/parent class methods will be called using the
keyword SUPER, for example:

CLASS Cat INHERITS Pet
 PRIVATE Breed: INTEGER
 PUBLIC PROCEDURE NEW(GivenName : STRING, GivenBreed : STRING)
 SUPER.NEW(GivenName)
 Breed ← GivenBreed
 ENDPROCEDURE
ENDCLASS

To create an object, the following format is used:

<object name> ← NEW <class name>(<param1>, <param2> ...)

For example:

MyCat ← NEW Cat("Kitty", "Persian")

Example code:

PRIVATE Attempts : INTEGER
Attempts ← 3

PUBLIC PROCEDURE SetAttempts(Number : INTEGER)
 Attempts ← Number
ENDPROCEDURE

PRIVATE FUNCTION GetAttempts() RETURNS INTEGER
 RETURN Attempts
ENDFUNCTION

Pseudocode Guide for Teachers Cambridge International AS & A Level Computer Science (9618)

25

Index of symbols and keywords

-, 11
←, 5
*, 11
/, 11
//, 3
+, 11
<, 11
<=, 11
<>, 11
=, 11
>, 11
>=, 11
^ (caret), 8
&, 13
AND, 12
APPEND, 21
ARRAY, 6
BOOLEAN, 4
BYREF, 20
BYVAL, 20
CALL, 18
CASE OF, 14
CHAR, 4
CLASS, 24
CLOSEFILE, 21
CONSTANT, 5
DATE, 4
DECLARE, 5
DIV, 11
ELSE, 14
ENDCASE, 15
ENDCLASS, 24
ENDFUNCTION, 19
ENDIF, 14
ENDPROCEDURE, 18
ENDTYPE, 9
ENDWHILE, 17
EOF, 21
FALSE, 4
FOR ... TO, 16
FOR (file handling), 21
FUNCTION, 19

GETRECORD, 22
IF, 14
INHERITS, 24
INPUT, 11
INT, 13
INTEGER, 4
LCASE, 12
LENGTH, 12
MID, 12
MOD, 11
NEXT, 16
NEW, 23
NOT, 12
OPENFILE, 21
OR, 12
OTHERWISE, 15
OUTPUT, 11
PROCEDURE, 18
PRIVATE, 24
PUBLIC, 24
PUTRECORD, 22
RAND, 13
RANDOM (files), 22
READ, 21
READFILE, 21
REAL, 4
REPEAT, 16
RETURN, 19
RETURNS, 19
RIGHT, 12
SEEK, 22
STEP, 16
STRING, 4
SUPER, 24
THEN, 14
TRUE, 4
TYPE, 8
UCASE, 12
UNTIL, 16
WHILE, 17
WRITE, 21
WRITEFILE, 21

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223 553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES January 2021

mailto:info@cambridgeinternational.org
http://www.cambridgeinternational.org/

	For examination from 2021
	Version 1.4
	How should teachers use this guide?
	1.1 Font style and size
	1.2 Indentation
	1.3 Case
	1.4 Lines and line numbering
	1.5 Comments
	2.1. Data Types
	2.2. Literals
	2.3. Identifiers
	Identifiers should be considered case insensitive, for example, Countdown and CountDown should not be used as separate variables.

	2.4. Variable declarations
	2.5. Constants
	2.6. Assignments
	3.1. Declaring arrays
	3.2. Using arrays
	4.1. Defining user-defined data types
	4.2. Using user-defined data types
	5.1. Input and output
	5.2. Arithmetic operations
	5.3. Relational operations
	5.4. Logic operators
	5.5. String functions and operations
	5.6. Numeric functions
	6.1. IF statements
	6.2. CASE statements
	7.1. Count-controlled (FOR) loops
	7.2. Post-condition (REPEAT) loops
	7.3. Pre-condition (WHILE) loops
	8.1. Defining and calling procedures
	8.2. Defining and calling functions
	8.3. Passing parameters by value or by reference
	9.1. Handling text files
	9.2. Handling random files
	10.1. Methods and Properties
	10.2. Constructors and Inheritance

