

# **Example Candidate Responses**

# Cambridge International AS & A Level Chemistry

9701

Paper 3 – Advanced Practical Skills

For examination from 2016



In order to help us develop the highest quality Curriculum Support resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of Cambridge Curriculum Support resources are very important to us.

https://www.surveymonkey.co.uk/r/GL6ZNJB

Do you want to become a Cambridge consultant and help us develop support materials?

Please follow the link below to register your interest.

http://www.cie.org.uk/cambridge-for/teachers/teacherconsultants/

Cambridge International Examinations retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party even for internal use within a Centre.

# **Contents**

| Contents                            | 3  |
|-------------------------------------|----|
| Introduction                        | 4  |
| Assessment at a glance              | 6  |
| Paper 3 – Advanced Practical Skills | 7  |
| Question 1(a) and 1(b)              | 7  |
| Question 1(c)                       | 12 |
| Question 2(a) & (b)                 | 15 |
| Question 2(c)                       | 22 |
| Question 3(a)                       | 25 |
| Question 3(b)                       | 34 |

# Introduction

The main aim of this booklet is to exemplify standards for those teaching Cambridge International AS and A Level Chemistry (9701), and to show how different levels of candidates' performance (high, middle and low) relate to the subject's curriculum and assessment objectives.

In this booklet candidate responses have been chosen to exemplify a range of answers. Each response is accompanied by a brief commentary explaining the strengths and weaknesses of the answers.

For each question, each response is annotated with a clear explanation of where and why marks were awarded or omitted. This, in turn, is followed by examiner comments on how the answer could have been improved. In this way it is possible for you to understand what candidates have done to gain their marks and what they will have to do to improve their answers. At the end there is a list of common mistakes candidates made in their answers for each question.

This document provides illustrative examples of candidate work. These help teachers to assess the standard required to achieve marks, beyond the guidance of the mark scheme. Some question types where the answer is clear from the mark scheme, such as short answers and multiple choice, have therefore been omitted.

The questions, mark schemes and pre-release material used here are available to download as a zip file from Teacher Support as the Example Candidate Responses Files. These files are:

| Question Paper 22, June 2016 |                    |  |  |  |
|------------------------------|--------------------|--|--|--|
| Question paper               | 9701_s16_qp_22.pdf |  |  |  |
| Mark scheme                  | 9701_s16_ms_22.pdf |  |  |  |
| Question Paper               | 33, June 2016      |  |  |  |
| Question paper               | 9701_s16_qp_33.pdf |  |  |  |
| Mark scheme                  | 9701_s16_ms_33.pdf |  |  |  |
| Question Paper 42, June 2016 |                    |  |  |  |
| Question paper               | 9701_s16_qp_42.pdf |  |  |  |
| Mark scheme                  | 9701_s16_ms_42.pdf |  |  |  |
| Question Paper 52, June 2016 |                    |  |  |  |
| Question paper               | 9701_s16_qp_52.pdf |  |  |  |
| Mark scheme                  | 9701_s16_ms_52.pdf |  |  |  |

Past papers, Examiner Reports and other teacher support materials are available on Teacher Support at https://teachers.cie.org.uk

# How to use this booklet

#### Example candidate response - high

3 Acidified potassium dichromate(VI) can oxidise ethanedioic acid, H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>. The relevant half-equations are shown.

$$Cr_2O_7^{2-} + 14H^* + 66^- \rightarrow 2Cr^{3^+} + 7H_2O$$

$$\begin{pmatrix} H_2C_2O_4 \rightarrow 2CO_2 + 2H^* + 2e^+ ) \not < \zeta, \\ f_1H_2C_2O_4 \rightarrow 6CO_2 + 6H^+ + 6e^- \end{pmatrix}$$
(a) State the overall equation for the reaction between acidified dichromate(VI) ions and

(a) State the overall equation for the reaction between acidified dichromate(VI) ions and ethanedioic acid.

Cr<sub>2</sub> O<sub>2</sub> 14H<sup>+</sup> + 3H<sub>2</sub>C<sub>2</sub>O<sub>4</sub> → 9Cr<sup>3+</sup> + 7H<sub>2</sub>O + 6CO<sub>2</sub>

Answers by real candidates in exam conditions. These show you the types of answers for each

Discuss and analyse the answers with your learners in the classroom to improve their skills.

level.

- 6.4 X 10

ted ethanedioic acid, H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>.xH<sub>2</sub>O, was reacted transium dichromate(VI):

e(VI) solution was required for complete oxidation

omate(VI) ions used to react with the sample of

amount = 6.4 X10-4 mol [1]

#### **Examiner comments**

This equation contains all the correct species from the half-equations given so one mark has

#### **Examiner comments**

are alongside the answers, linked to specific part of the answer. These explain where and why marks were awarded. This helps you to interpret the standard of Cambridge exams and helps your learners to refine their exam technique.

#### How the candidate could have improved their answer

In (a) the candidate needed to remember that the key loss in one half-equation must balance the electron ga

In **(b)(iii)** the candidate used the correct method but n number of significant figures in the answer must corre provided.

This explains how the candidate could have improved their answer and helps you to interpret the standard of Cambridge exams and helps your learners to refine exam technique.

#### Common mistakes candidates made in this question

(a) The skills needed to combine two half-equations and tricky for many candidates. Good candidates often got of them out, while weaker candidates failed to recognise the

(b) The first two parts of the calculation were generally of the Mr calculation depended on the previous answer tog This lists the common mistakes candidates made in answering each question. This will help your learners to avoid these mistakes at the exam and give them the best chance of achieving a high mark.

# Assessment at a glance

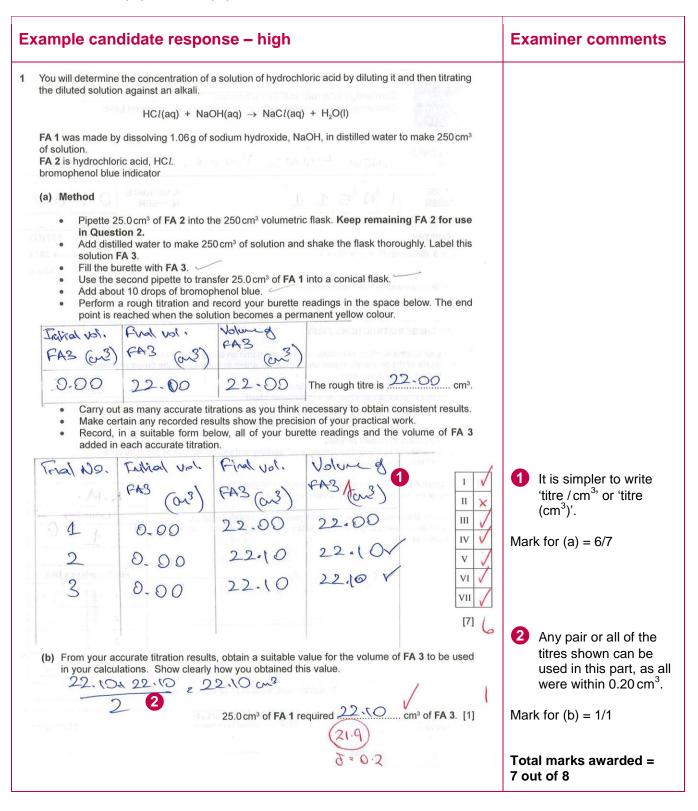
Candidates for Advanced Subsidiary (AS) certification take Papers 1, 2 and 3 (either Advanced Practical Skills 1 or Advanced Practical Skills 2) in a single examination series.

Candidates who, having received AS certification, wish to continue their studies to the full Advanced Level qualification may carry their AS marks forward and take Papers 4 and 5 in the examination series in which they require certification.

Candidates taking the full Advanced Level qualification at the end of the course take all five papers in a single examination series.

Candidates may only enter for the papers in the combinations indicated above.

Candidates may not enter for single papers either on the first occasion or for resit purposes.


All components are externally assessed.

| Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weighting |         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|--|
| Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AS Level  | A Level |  |
| Paper 1 Multiple Choice  This paper consists of 40 multiple choice questions, 30 of the direct choice type and 10 of the multiple completion type, all with four options. All questions will be based on the AS Level syllabus content. Candidates will answer all questions.  Candidates will answer on an answer sheet.  [40 marks]                                                                                                                                                               | 31%       | 15.5%   |  |
| Paper 2 AS Level Structured Questions  This paper consists of a variable number of questions of variable mark value. All questions will be based on the AS Level syllabus content. Candidates will answer all questions. Candidates will answer on the question paper. [60 marks]                                                                                                                                                                                                                   | 46%       | 23%     |  |
| Paper 3 Advanced Practical Skills  This paper requires candidates to carry out practical work in timed conditions.  Candidates will be expected to collect, record and analyse data so that they can answer questions related to the activity. The paper will consist of two or three experiments drawn from different areas of chemistry. Candidates will answer all questions. Candidates will answer on the question paper.  [40 marks]                                                          | 23%       | 11.5%   |  |
| Paper 4 A Level Structured Questions  This paper consists of a variable number of free response style questions of variable mark value. All questions will be based on the A Level syllabus but may require knowledge of material first encountered in the AS Level syllabus.  Candidates will answer all questions. Candidates will answer on the question paper.  [100 marks]                                                                                                                     | -         | 38.5%   |  |
| Paper 5 Planning, Analysis and Evaluation  This paper consists of a variable number of questions of variable mark value based on the practical skills of planning, analysis and evaluation. The context of the questions may be outside the syllabus content, but candidates will be assessed on their practical skills of planning, analysis and evaluation rather than their knowledge of theory. Candidates will answer all questions. Candidates will answer on the question paper.  [30 marks] | -         | 11.5%   |  |

Teachers are reminded that the latest syllabus is available on our public website at **www.cie.org.uk** and Teacher Support at **https://teachers.cie.org.uk** 

# Paper 3 – Advanced Practical Skills

# Question 1(a) and 1(b)



#### Paper 3 - Advanced Practical Skills

# How the candidate could have improved their answer

(a) The word 'added' or 'used' was needed with 'volume of FA 3'.

Mark awarded = (a) 6/7 Mark awarded = (b) 1/1

Total marks awarded = 7 out of 8

| Example candidate response – middle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Examiner comments                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>You will determine the concentration of a solution of hydrochloric acid by diluting it and then titrating the diluted solution against an alkali.</li> <li>HCl(aq) + NaOH(aq) → NaCl(aq) + H₂O(I)</li> <li>FA 1 was made by dissolving 1.06 g of sodium hydroxide, NaOH, in distilled water to make 250 cm³ of solution.</li> <li>FA 2 is hydrochloric acid, HCl. bromophenol blue indicator</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                |
| <ul> <li>(a) Method</li> <li>Pipette 25.0 cm³ of FA 2 into the 250 cm³ volumetric flask. Keep remaining FA 2 for use in Question 2.</li> <li>Add distilled water to make 250 cm³ of solution and shake the flask thoroughly. Label this solution FA 3.</li> <li>Fill the burette with FA 3.</li> <li>Use the second pipette to transfer 25.0 cm³ of FA 1 into a conical flask.</li> <li>Add about 10 drops of bromophenol blue.</li> <li>Perform a rough titration and record your burette readings in the space below. The end point is reached when the solution becomes a permanent yellow colour.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The titre for the rough titration does not have to be precise.                                                                                 |
| <ul> <li>Carry out as many accurate titrations as you think necessary to obtain consistent results.</li> <li>Make certain any recorded results show the precision of your practical work.</li> <li>Record, in a suitable form below, all of your burette readings and the volume of FA 3 added in each accurate titration.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The third titre is within 0.10 cm <sup>3</sup> of the first and the mean shows good agreement with the supervisor's value.  Mark for (a) = 4/7 |
| 2 16.40. 16.55<br>3 16.55 16.60 VI / VII / V | 3 The answer given is not an arithmetic mean of any combination of the three accurate titres, and no working is shown.                         |
| (b) From your accurate titration results, obtain a suitable value for the volume of FA 3 to be used in your calculations. Show clearly how you obtained this value.  3 25.0 cm³ of FA 1 required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mark for (b) = 0/1  Total marks awarded = 4 out of 8                                                                                           |

- (a) Burette readings should have been shown for the rough titration.
- (a) With no accurate burette readings, tabulated with suitable headings and units, two marks are unavailable. The examiner was also unable to check the working for calculating the value to use for the accuracy marks.
- **(b)** The titres used for calculating the mean should have been indicated, either by showing the working in the space or by ticks next to the values selected.

Mark awarded = (a) 4/7

Mark awarded = (b) 0/1

Total marks awarded = 4 out of 8

| Example                                                                              | candidate r                                                                                                                                                                                                                                                                                                                                           | espons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e – Iow                                                                                                                                                                                   |                                                                                                                                                                       |                                                                              |                                                                                                                                                                      | Examiner comments                                                   |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| FA 1 was m of solution. FA 2 is hyd bromophen  (a) Method  Pip in  Ad  So  Ad  Pe po | pade by dissolving 1.  rochloric acid, HCl. ol blue indicator  d  pette 25.0 cm³ of FA  Question 2. Id distilled water to relation FA 3. If the burette with FA the the second pipetted about 10 drops of erform a rough titration in is reached when  initial with the second pipetted about 10 drops of erform a rough titration in is reached when | 2 into the 25 make 250 cm 3. to transfer bromophen on and record the solution  ump   cm³   cm³   cm³   cm³   cm²   cm³   cm²   cm² | q) → NaCl(a<br>m hydroxide, No<br>50 cm³ volumet<br>3 of solution are<br>25.0 cm³ of FA<br>of blue,<br>rd your burette<br>becomes a pe<br>29.40<br>27.00<br>ns as you thinkshow the preci | q) + H <sub>2</sub> O(I) NaOH, in distilled ric flask. <b>Keep</b> and shake the flate readings in the remanent yellow.  The rough tick necessary to sison of your pr | remaining FA ask thoroughly.  al flask.  he space below y colour.  itre is27 | 2 for use Label this  7. The end  1. The end | 1 The subtraction error is not penalised here.  Mark for (a) = 3/7  |
|                                                                                      | ded in each accurat                                                                                                                                                                                                                                                                                                                                   | e titration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | It so gastow to                                                                                                                                                                           | 2                                                                                                                                                                     | 3                                                                            |                                                                                                                                                                      |                                                                     |
|                                                                                      | Initial volume                                                                                                                                                                                                                                                                                                                                        | cm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.40                                                                                                                                                                                      | 0.80                                                                                                                                                                  | 1.20                                                                         | П                                                                                                                                                                    |                                                                     |
| ¥10 6                                                                                | Final volume                                                                                                                                                                                                                                                                                                                                          | cm3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26-60                                                                                                                                                                                     | 27.90                                                                                                                                                                 | 27.60                                                                        | III                                                                                                                                                                  |                                                                     |
|                                                                                      | 10.16                                                                                                                                                                                                                                                                                                                                                 | NAME OF TAXABLE PARTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.20                                                                                                                                                                                     | 26.80                                                                                                                                                                 | 26.40                                                                        | IV 🔀                                                                                                                                                                 |                                                                     |
| 1                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000                                                                                                                                                                                      | 27.00.                                                                                                                                                                |                                                                              | V ×                                                                                                                                                                  |                                                                     |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                       | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .30                                                                                                                                                                                       |                                                                                                                                                                       |                                                                              | VI 🔊                                                                                                                                                                 |                                                                     |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                       | (25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (45) 0 =                                                                                                                                                                                  | 0.85                                                                                                                                                                  |                                                                              | [7] 3                                                                                                                                                                | Working is shown but the subtraction error in (a) negates the mark. |
| (b) From y<br>in your                                                                | our accurate titratio<br>calculations. Show<br>2b-20                                                                                                                                                                                                                                                                                                  | cl 2 / how                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | you obtained                                                                                                                                                                              | this value.                                                                                                                                                           | subtrace                                                                     |                                                                                                                                                                      | Mark for (b) = 0/1                                                  |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                       | 3 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i.0 cm <sup>3</sup> of FA 1                                                                                                                                                               | required                                                                                                                                                              | 26.47 cm <sup>3</sup> c                                                      | of FA 3. [1] 🔿                                                                                                                                                       | Total marks awarded = 3 out of 8                                    |

- (a) The candidate did not achieve concordant titres so was not awarded the fourth mark here. The last titre must be within 0.10 cm³ of any other accurate value. The mean of the closest pair (calculated by the examiner) gave a value too far from that of the supervisor to gain any marks for accuracy of titration (quality marks). A greater number of titrations were needed to achieve consistent titres.
- (b) The total spread of titres used here was  $0.60\,\mathrm{cm}^3$  which is greater than the  $0.20\,\mathrm{cm}^3$  allowed.

Mark awarded = (a) 3/7

Mark awarded = (b) 0/1

Total marks awarded = 3 out of 8

#### Common mistakes candidates made in this question

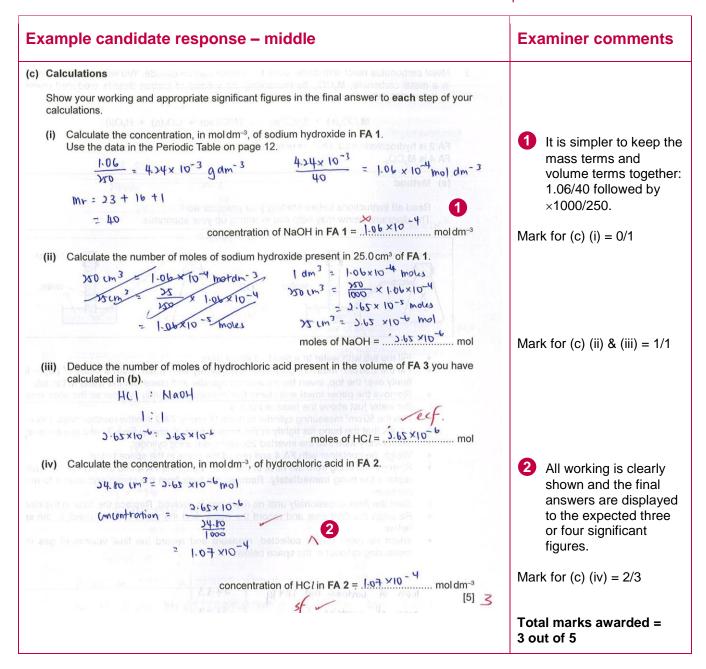
(a) A substantial minority of candidates did not record burette readings for the rough titration. Some headings were incorrect, for example, 'IBR' for 'initial burette reading' and 'amount' instead of 'volume', or the units were omitted.

Many candidates did not record all their accurate burette readings to #.#0 or #.#5, especially when starting at the zero mark.

Some candidates did not perform an additional titration when their final titre was not within 0.10 cm<sup>3</sup> of any previous value.

**(b)** The most common errors were not indicating which titres were to be used in the calculation and not giving the answer correct to two decimal places.

# Question 1(c)


| Example candidate response – high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Examiner comments</b>                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| (c) Calculations of do y explored and asset of a refuse of the line long realismed as the line of the line of the long realismed as |                                                                           |
| Show your working and appropriate significant figures in the final answer to <b>each</b> step of your calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |
| (i) Calculate the concentration, in mol dm <sup>-3</sup> , of sodium hydroxide in FA 1. Use the data in the Periodic Table on page 12. $ N(NAOH) = \frac{1.06}{23+16+1}                                  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                           |
| = 0.0765 mol = 0.106 mol dm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |
| concentration of NaOH in FA 1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mark for (c) (i) = 1/1                                                    |
| (ii) Calculate the number of moles of sodium hydroxide present in 25.0 cm³ of FA 1.  (NaUH) = (0.06)(×)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| (ii) Calculate the number of moles of sodium hydroxide present in 25.0 cm³ of FA 1.  (NADH) = (0.06)(×)  1000  = 0.00 % 5 Me  moles of NaOH = 0.00 % 5 mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                           |
| (iii) Deduce the number of moles of hydrochloric acid present in the volume of FA 3 you have calculated in (b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                           |
| h (HCI) =n (NaOH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           |
| h(HCI) = n(NaOH) $= 0.00 %5 mol$ moles of $HCI = 0.00 %5 mol$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mark for (c) (ii) & (iii) = 1/1                                           |
| (iv) Calculate the concentration, in mol dm <sup>-3</sup> , of hydrochloric acid in <b>FA 2</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           |
| [Ha] = 0.80 x65<br>= 0.101 mol dm 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 The factor of ×10 for the dilution carried out in (a) has been omitted. |
| concentration of HC $l$ in FA 2 = $0.104$ mol dm <sup>-3</sup> [5] 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mark for (c) (iv) = 2/3                                                   |
| PI Is abatas Franting To see _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total marks awarded = 4 out of 5                                          |

# How the candidate could have improved their answer

(c) (iv) More careful reading of the questions was needed, as part (iii) is about FA 3 but part (iv) requires the concentration of FA 2.

Mark awarded = (c) (i) 1/1, (ii) & (iii) 1/1, (iv) 2/3

Total marks awarded = 4 out of 5



(c) (i) The unit in the first stage of the calculation should have been  $g cm^{-3}$  as the factor of  $\times 1000$  is missing. The dilution factor of  $\times 10$  was also missing in (c) (iv).

Mark awarded = (c) (i) 0/1, (ii) & (iii) 1/1, (iv) 2/3

Total marks awarded = 3 out of 5

| Example candidate response – low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Examiner comments                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| (c) Calculations with years are as a second of status and day loss and another tenth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |
| Show your working and appropriate significant figures in the final answer to each step of your calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     |
| (i) Calculate the concentration, in moldm <sup>-3</sup> , of sodium hydroxide in <b>FA 1</b> . Use the data in the Periodic Table on page 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     |
| n MaON = 1.06 23+16+1 250 0.0765 0.106 moldm?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     |
| concentration of NaOH in FA 1 = 0.0765 moldm <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mark for (c) (i) = 1/1                                              |
| (ii) Calculate the number of moles of sodium hydroxide present in 25.0 cm³ of FA 1.  1 20 cm³ > 3.10 b cm³  2 cm³ > 3.00 b cm³  2 cm³ > 3.00 b cm²  3 cm³ > 3.00 b cm²  3 cm³ > 3.00 b cm²  3 cm² > 3.00 b cm² | 1 A check on the units for the answer in (c) (i) might have helped. |
| moles of NaOH =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mark for (c) (ii) & (iii) = 0/1                                     |
| $N_{HU} = 300 \text{ tb} \text{ mol}$ moles of $HCi = \frac{300 \text{ tb}}{1000 \text{ mol}}$ mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |
| (IV) Calculate the concentration, in moldm <sup>3</sup> , of hydrochloric acid in FA 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Careful reading of the question helps avoid this type of error.     |
| When he more gap is collected, measure and record the final volume of gas in measuring rylinder in the space below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mark for (c) (iv) = 1/3                                             |
| concentration of HCl in FA $2 = \frac{\delta \cdot \psi \cdot \psi}{5}$ mol dm <sup>-3</sup> [5] 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total marks awarded = 2 out of 5                                    |

- (c) (ii) More careful reading of the question was needed here, as there appeared to be confusion between the 250 cm<sup>3</sup> of solution FA 1 given in the information in (a) with the 1 dm<sup>3</sup> from the answer in (c) (i).
- (c) (iv) The volume of FA 1 pipetted was used rather than the volume of FA 3 calculated in (b). The dilution factor was also omitted.

Mark awarded = (c) (i) 1/1, (ii) and (iii) 0/1, (iv) 1/3

Total marks awarded = 2 out of 5

#### Common mistakes candidates made in this question

The most common mistake was to ignore the dilution factor of x 10 used in making FA 3 from FA 2. This was needed in (c) (iv).

Other errors included giving answers to two significant figures and incorrect rounding of answers: figures of 5 and above are always rounded up.

# Question 2(a) & (b)

# Example candidate response – high **Examiner comments** Metal carbonates react with dilute acids to produce carbon dioxide. You will identify the metal, M, in a metal carbonate, M2CO3, by measuring the volume of carbon dioxide produced during the reaction of M2CO3 with excess hydrochloric acid. $M_2CO_3(s) + 2HCl(aq) \rightarrow 2MCl(aq) + CO_2(g) + H_2O(l)$ FA 2 is hydrochloric acid, HCl, as used in Question 1. FA 4 is M<sub>2</sub>CO<sub>3</sub>. (a) Method Read all instructions before starting your practical work. The diagrams below may help you in setting up your apparatus. clamp clamp water water Fill the tub with water to a depth of about 5 cm. Fill the 250 cm3 measuring cylinder completely with water. Hold a piece of paper towel firmly over the top, invert the measuring cylinder and place it in the water in the tub. Remove the paper towel and clamp the inverted measuring cylinder so the open end is in the water just above the base of the tub. Use the 50 cm³ measuring cylinder to place 50 cm³ of FA 2 into the reaction flask, labelled X. Check that the bung fits tightly in the neck of flask X, clamp flask X, and place the end of the delivery tube into the inverted 250 cm<sup>3</sup> measuring cylinder. Weigh the container with FA 4 and record the mass in the space below. Remove the bung from the neck of the flask. Tip all the FA 4 into the acid in the flask and replace the bung immediately. Remove the flask from the clamp and swirl it to mix the contents. Swirl the flask occasionally until no more gas is evolved. Replace the flask in the clamp. Reweigh the container and record the mass, and the mass of FA 4 used, in the space When no more gas is collected, measure and record the final volume of gas in the measuring cylinder in the space below. Initial vol. Ache+ 0,0 110.0 Mark for (a) = 2/2[2]

| Example candidate response – high, continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Examiner comments                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| (b) Calculations (b) Calculations (c) Control of the Control of th                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |
| Show your working and appropriate significant figures in the final answer to <b>each</b> step of your calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| (i) Use the volume of gas you collected to calculate the number of moles of gas produced.  [Assume that 1 mole of gas occupies 24.0 dm³ under these conditions.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
| $Vol. 8 gos > 110.0 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} $ $Vol. 8 gos > 110.0 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} $ $Vol. 8 gos > 110.0 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} $ $Vol. 8 gos > 110.0 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} $ $Vol. 8 gos > 110.0 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} $ $Vol. 8 gos > 110.0 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} $ $Vol. 8 gos > 110.0 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} $ $Vol. 8 gos > 110.0 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} $ $Vol. 8 gos > 110.0 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} $ $Vol. 8 gos > 110.0 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} $ $Vol. 8 gos > 110.0 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} $ $Vol. 8 gos > 110.0 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} $ $Vol. 8 gos > 110.0 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} $ $Vol. 8 gos > 110.0 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} $ $Vol. 8 gos > 110.0 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} dm^{3} $ $Vol. 8 gos > 110.0 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} dm^{3} $ $Vol. 8 gos > 110.0 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} dm^{3} $ $Vol. 8 gos > 110.0 \times 10^{-3} dm^{3} = 4.58 \times 10^{-3} dm^{3} = 4$ |                                      |
| 1 rde -> 24.0 dus -3 dus =4=4.60×10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 The second decimal                 |
| - x 2 11.0 x 0 x 10 - 3 1 x 608 x 10 - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | place indicates this                 |
| 24.0 moles of gas = 4.60 MO. mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | answer is shown to three significant |
| (ii) Use your answer to (i) to deduce the number of moles of M2CO3 used in the reaction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | figures.                             |
| Mr=20+12.0+ (16.0+3) = 2n + oles g(02 >)<br>Males of go = notes of notes g u2cq -> 1<br>>> N = 4.60×10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |
| males of goo a notes of what of Macros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |
| moles of M <sub>2</sub> CO <sub>3</sub> = 14.60×10. mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mark for (b) (i) & (ii) = 0/1        |
| (iii) Use your answer to (ii) and the mass of FA 4 used to calculate the relative formula mass,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |
| $4.60\times10^{-3} = 0.91 = 21460 = 197.8260 = 197.83$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |
| (2n+60) => 2n=137.826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| (iv) Use your answer to (iii) and the Periodic Table on page 12 to identify metal M. Explain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mark for (b) (iii) = 1/1             |
| (iv) Use your answer to (iii) and the Periodic Table on page 12 to identify metal M Explain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |
| your answer. Mrz 197.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
| your answer. $M_{2}197.83$<br>>> $2n+602197.83$<br>>> $2137.83268.915$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Mis Rb (rubblum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
| since 68.915 is closer to AT of Rb (85.5) thank to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |
| since 68.915 ? claser to Ar of Rb (85.5) thank to the Ard K (39.1) ord 91-15 a group I metal , [4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mark for (b) (iv) = 2/2              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total marks awarded = 5 out of 6     |

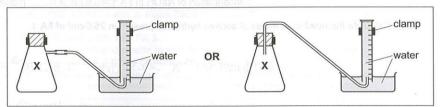
**(b) (i)** The answer should have been rounded correctly:  $4.58 \times 10^{-3}$  was correct to three significant figures but the answer given would only have been correct if quoted to two significant figures:  $4.6 \times 10^{-3}$ .

Mark awarded = (a) 2/2 Mark awarded = (b) (i) & (ii) 0/1, (iii) 1/1, (iv) 2/2

Total marks awarded = 5 out of 6

# Example candidate response - middle

#### **Examiner comments**


2 Metal carbonates react with dilute acids to produce carbon dioxide. You will identify the metal, M, in a metal carbonate, M₂CO₃, by measuring the volume of carbon dioxide produced during the reaction of M₂CO₃ with excess hydrochloric acid.

$$M_2CO_3(s) + 2HCl(aq) \rightarrow 2MCl(aq) + CO_2(g) + H_2O(l)$$

FA 2 is hydrochloric acid, HCl, as used in Question 1. FA 4 is  $M_2CO_3$ .

#### (a) Method

Read **all** instructions before starting your practical work. The diagrams below may help you in setting up your apparatus.



- Fill the tub with water to a depth of about 5 cm.
- Fill the 250 cm³ measuring cylinder **completely** with water. Hold a piece of paper towel firmly over the top, invert the measuring cylinder and place it in the water in the tub.
- Remove the paper towel and clamp the inverted measuring cylinder so the open end is in the water just above the base of the tub.
- Use the 50 cm³ measuring cylinder to place 50 cm³ of FA 2 into the reaction flask, labelled X.
   Check that the bung fits tightly in the neck of flask X, clamp flask X, and place the end of the delivery tube into the inverted 250 cm³ measuring cylinder.
- Weigh the container with **FA 4** and record the mass in the space below.
- Remove the bung from the neck of the flask. Tip all the FA 4 into the acid in the flask and replace the bung immediately. Remove the flask from the clamp and swirl it to mix the contents.
- Swirl the flask occasionally until no more gas is evolved. Replace the flask in the clamp.
- Reweigh the container and record the mass, and the mass of FA 4 used, in the space below
- When no more gas is collected, measure and record the final volume of gas in the measuring cylinder in the space below.

|               | FA4 and its container /9 39.70        |
|---------------|---------------------------------------|
|               | Container of FA4 /9 38.78             |
| 137<br>196) p | FA 4 Used /9 0.92                     |
|               | Final Reading in cylinder lear 126.00 |

1 The ratio of volume of gas/mass FA 4 is lower than the range of acceptable values (157 – 235), using the supervisor's results.

Mark for (a) = 1/2

[2] /

| Ex | ample candid                                       | ate response – middle, continued                                                                                                                     | Examiner comments                            |
|----|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| b) | Calculations                                       | mater of the ancomoundating contracts on other RSA (i) (b)                                                                                           |                                              |
|    | Show your working and calculations.                | d appropriate significant figures in the final answer to each step of your                                                                           |                                              |
|    |                                                    | gas you collected to calculate the number of moles of gas produced. ole of gas occupies 24.0 dm³ under these conditions.]                            |                                              |
|    | V= 13                                              | 26.00 cm <sup>3</sup><br>.1260dm <sup>3</sup><br>0.1260dm <sup>3</sup> = 6.250x(0 <sup>-3</sup> mp)                                                  |                                              |
|    |                                                    | $n = \frac{0.1260  \text{dm}^3}{24.0  \text{dm}^3  \text{ing}^1} = 5.25 \times 10^{-3}  \text{mol}$ moles of gas = $5.25 \times 10^{-3}  \text{mol}$ |                                              |
| H  | (ii) Use your answer t                             | o (i) to deduce the number of moles of $\mathbf{M}_2\mathrm{CO}_3$ used in the reaction.                                                             |                                              |
|    |                                                    | moles of $\mathbf{M}_2 \mathbf{CO}_3 = \mathbf{S} \cdot \mathbf{N} \mathbf{O} \mathbf{X} \mathbf{O}^3$ mol                                           | Mark for (b) (i) & (ii) = 1/1                |
| (  | $M_{\rm r}$ , of $M_2{\rm CO}_3$ .                 | o (ii) and the mass of FA 4 used to calculate the relative formula mass,                                                                             |                                              |
|    | Marine Care                                        | $4r = \frac{m}{n} = \frac{0.929}{5.25 \times 10^3 \text{mol}} = 175.29 \text{ mol}^{-1}$                                                             |                                              |
|    |                                                    | $M_{\rm r}$ of $M_2 CO_3 = 175.2 g mol^{-1}$                                                                                                         | Mark for (b) (iii) = 1/1                     |
| (  | <ul><li>iv) Use your answer your answer.</li></ul> | to (iii) and the Periodic Table on page 12 to identify metal M. Explain                                                                              |                                              |
|    | $Mr = \frac{175}{}$                                | 2 - 12-16x43 = £7.6 mola gmol7                                                                                                                       |                                              |
|    | M io 1                                             | Sobalt Nickel 2                                                                                                                                      | 2 The metal M is                             |
|    | The                                                | atomic mass obtained is closest to                                                                                                                   | potassium for the value of $A_r$ calculated. |
|    | Gobalt 's                                          | atomic mass obtained is closest to atomic mass of $\pm 8.7  g  \text{mol}^{-1}$                                                                      | Mark for (b) (iv) = 1/2                      |
|    |                                                    |                                                                                                                                                      | Total marks awarded = 4 out of 6             |

- (a) The gas collection technique needed to be practised as an individual task so that less gas was lost to the surroundings.
- (b) (iv) The white colour of FA 4 and its formula should have suggested M is a group 1 metal.

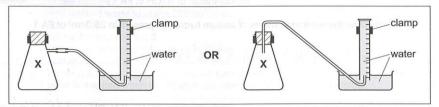
Mark awarded = (a) 1/2

Mark awarded = (b) (i) & (ii) 1/1, (iii) 1/1, (iv) 1/2

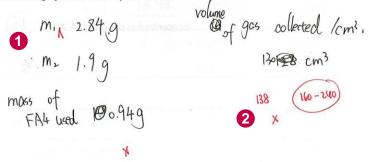
Total marks awarded = 4 out of 6

#### Example candidate response - low

#### **Examiner comments**


Metal carbonates react with dilute acids to produce carbon dioxide. You will identify the metal, M, in a metal carbonate, M<sub>2</sub>CO<sub>3</sub>, by measuring the volume of carbon dioxide produced during the reaction of M<sub>2</sub>CO<sub>3</sub> with excess hydrochloric acid.

$$M_2CO_3(s) + 2HCl(aq) \rightarrow 2MCl(aq) + CO_2(g) + H_2O(l)$$


FA 2 is hydrochloric acid, HC  $l_i$  as used in Question 1. FA 4 is  $M_2CO_3$ .

#### (a) Method

Read all instructions before starting your practical work. The diagrams below may help you in setting up your apparatus.



- Fill the tub with water to a depth of about 5 cm.
- Fill the 250 cm³ measuring cylinder **completely** with water. Hold a piece of paper towel firmly over the top, invert the measuring cylinder and place it in the water in the tub.
- Remove the paper towel and clamp the inverted measuring cylinder so the open end is in the water just above the base of the tub.
- Use the 50 cm³ measuring cylinder to place 50 cm³ of FA 2 into the reaction flask, labelled X.
- Check that the bung fits tightly in the neck of flask X, clamp flask X, and place the end of the delivery tube into the inverted 250 cm³ measuring cylinder.
- · Weigh the container with FA 4 and record the mass in the space below.
- Remove the bung from the neck of the flask. Tip all the FA 4 into the acid in the flask and replace the bung immediately. Remove the flask from the clamp and swirl it to mix the contents.
- Swirl the flask occasionally until no more gas is evolved. Replace the flask in the clamp.
- Reweigh the container and record the mass, and the mass of FA 4 used, in the space below.
- When no more gas is collected, measure and record the final volume of gas in the measuring cylinder in the space below.



- 1 It is important to use the same balance throughout an experiment to avoid any difference in zero error.
- 2 It's important to practise calculations.

Mark for (a) = 0/2

[2]0

| zxampı           | e candidate                      | e response – low, continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Examiner comments                      |
|------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| (b) Calcula      | itions                           | force of the product process and modernia (ii) (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| Show ye calculat |                                  | ppropriate significant figures in the final answer to each step of your                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |
|                  |                                  | s you collected to calculate the number of moles of gas produced. of gas occupies 24.0 dm³ under these conditions.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
|                  |                                  | 0.13 ÷ 14 = 5-33 mol 5.42 ×10-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                  |                                  | suffer of a contact and a super supe |                                        |
| (ii) Use         | e your answer to (i              | i) to deduce the number of moles of M <sub>2</sub> CO <sub>3</sub> used in the reaction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
|                  |                                  | moles of $M_2CO_3 = $ $M_2CO_3 = $ mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mark for (b) (i) & (ii) = 1/1          |
| (iii) Use        | of M.CO.                         | ii) and the mass of FA 4 used to calculate the relative formula mass,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
| . 1991           | CA James                         | 0.94 ÷ (9.42×10-3) = 173.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
|                  |                                  | $173.5$ $M_{\rm r} \text{ of } M_{\rm 2}CO_3 = \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mark for (b) (iii) = 1/1               |
|                  | e your answer to (<br>ur answer. | (iii) and the Periodic Table on page 12 to identify metal M. Explain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
|                  |                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
|                  | _                                | Á                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Working must be shown in calculations. |
| <b>M</b> i       | the atomic                       | mass of M is 56.77 Which is close to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mark for (b) (iv) = 0/2                |
|                  | the atomic                       | mass of Fe. [4] 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total marks awarded =                  |

- (a) The headings for the weighings were incomplete and the two weighings were not to the same number of decimal places. The volume of gas collected was lower than the range from the supervisor's value.
- **(b) (iv)** All the relevant information given in the question needed to be considered when coming to a conclusion: iron has oxidation states II and III in compounds and forms coloured compounds.

Mark awarded = (a) 0/2

Mark awarded = (b) (i) & (ii) 1/1, (iii) 1/1, (iv) 0/2

Total marks awarded = 2 out of 6

#### Common mistakes candidates made in this question

- (a) The most common error in this part was the collection of a gas volume which was smaller than expected. Candidates need to check their apparatus before beginning to make sure the bung fits securely. If there is air in the measuring cylinder before the start, it should only be a small volume but should be at a level where the scale has started.
- **(b)** The most common error was in identifying the metal ion, M, in FA 4. A common response was to look for the element with the nearest  $A_r$  regardless of group, normal oxidation state(s) or colour. The information given should have led candidates to consider Group 1 or silver, and the latter could be discounted as hydrochloric acid would have precipitated the silver ions, so preventing the carbonate from reacting fully.

# Question 2(c)

| Example candidate response – high                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Examiner comments                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| (c) (i) A 250 cm³ measuring cylinder can be read to ±1 cm³.                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                           |
| Calculate the maximum percentage error in your reading of the volume of gas. $ \frac{(1-0) \times 2}{1000-0.0} \ge \frac{2 \cdot 0 \times 10^{3} \cdot 18 \cdot 18 \cdot 1}{1000} \cdot \frac{18 \cdot 18 \cdot 18 \cdot 18}{1000} \cdot \frac{18 \cdot 18 \cdot 18 \cdot 18}{10000} \cdot \frac{18 \cdot 18 \cdot 18}{10000} \cdot \frac{18 \cdot 18 \cdot 18}{10000} \cdot \frac{18 \cdot 18 \cdot 18}{100000} \cdot \frac{18 \cdot 18 \cdot 18}{100000000000000000000000000000000000$ | Doubling the error is<br>correct here, as both<br>initial and final<br>measuring cylinder<br>readings are |
| (ii) It is likely that the volume of carbon dioxide that you collected was less than the theoretical<br>volume.                                                                                                                                                                                                                                                                                                                                                                          | considered.                                                                                               |
| Give two reasons why this volume is likely to be less than the theoretical volume.                                                                                                                                                                                                                                                                                                                                                                                                       | Mark for (c) (i) = 1/1                                                                                    |
| In each case, suggest and explain a modification to the practical procedure that could help to reduce the difference in volume.                                                                                                                                                                                                                                                                                                                                                          |                                                                                                           |
| reason long couldn't be place as soon to reactory                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           |
| modification place to reachably in the flook                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |
| modification place to reachably in the flack such a keat they to not reach until                                                                                                                                                                                                                                                                                                                                                                                                         | 2 Greater detail about                                                                                    |
| bug & daced 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the practical procedure is needed here.                                                                   |
| reason CO2 3s slightly soluble in water                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |
| 586 5 5 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mark for (c) (ii) = 3/4                                                                                   |
| modification usge of a gas syringe.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                           |
| L Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |
| [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total marks awarded = 4 out of 5                                                                          |

## How the candidate could have improved their answer

- **(c) (i)** The final answer was incorrect by a power of 10. However, enough correct working was shown for this mark to be awarded.
- (c) (ii) In the first modification, a method of keeping the two reactants separate until the bung is inserted needed to be clearly stated.

Mark awarded = (c) (i) 1/1, (ii) 3/4

Total marks awarded = 4 out of 5

| Exan    | nple candidate response – middle                                                                                                                                     | Examiner comments                                                                               |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| (c) (i) | A 250 cm $^3$ measuring cylinder can be read to $\pm 1\text{cm}^3$ .                                                                                                 |                                                                                                 |
|         | Calculate the maximum percentage error in your reading of the volume of gas.  1 $\frac{0.5 \text{ x}}{145} \times 100 = 0.34$ .  maximum percentage error = $0.34$ % | 1 The error in a scale reading is usually taken to be ± half a division and 250 cm <sup>3</sup> |
| (ii)    | It is likely that the volume of carbon dioxide that you collected was less than the theoretical volume.                                                              | measuring cylinders<br>are not calibrated at<br>1 cm <sup>3</sup> .                             |
|         | Give <b>two</b> reasons why this volume is likely to be less than the theoretical volume.                                                                            | Mark for (c) (i) = 0/1                                                                          |
|         | In each case, suggest and explain a modification to the practical procedure that could help to reduce the difference in volume.                                      |                                                                                                 |
|         | reason Carbon dioxide is slightly soluble in water and may have reacted with the water in the measuring cylinder.                                                    |                                                                                                 |
| SIAL    | modification Fully Saturale the water of the measuring cylinder with Carbon dioxide by pumping it through the water                                                  |                                                                                                 |
|         | before beginning the experiment.                                                                                                                                     |                                                                                                 |
|         | reason 4 Carbon dioxide may have been lost to the                                                                                                                    | 2 Human error or                                                                                |
|         | surroundings before the bung was placed on the conical trask, modification. Get help from a second person to place the                                               | seeking help from<br>others never gains<br>marks in this type of                                |
|         | bung quickly and repeat the experiment several times                                                                                                                 | question.                                                                                       |
|         | to obtain an average reading to plot a graph. X                                                                                                                      | Mark for (c) (ii) = 3/4                                                                         |
|         | CONTRACTOR OF STANCE STANDARDS STANDARDS STANDARDS                                                                                                                   | Total marks awarded = 3 out of 5                                                                |

- **(c) (i)** As only the volume of gas collected was given in (a) no doubling of the error was needed. However, halving the error was not correct.
- (c) (ii) In the second modification, a method detailing how the two reactants can be kept separate until the bung is inserted was needed. Repeating the experiment several times does not help reduce the gas lost while using the method given in (a).

Mark awarded = (c) (i) 0/1, (ii) 3/4

Total marks awarded = 3 out of 5

| Example candidate response – low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Examiner comments                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c) (i) A 250 cm³ measuring cylinder can be read to ±1 cm³.  Calculate the maximum percentage error in your reading of the volume of gas.  (ii) It is likely that the volume of carbon dioxide that you collected was less than the theoretical volume.  Give two reasons why this volume is likely to be less than the theoretical volume.  In each case, suggest and explain a modification to the practical procedure that could help to reduce the difference in volume.  The act of the could be a complete that the could help to reduce the difference in volume.  The act of the could be a complete that the could be a could b | 1 The use of '1' as the error is correct as only the 'volume of gas' was given in (a), so the examiner assumes the measuring cylinder was full of water before starting the experiment.  Mark for (c) (i) = 0/1 |
| reason Not all of the CD. & computing delinered into the that with the control of | <ul> <li>Poor technique is a human error so is not credited.</li> <li>Mark for (c) (ii) = 2/4</li> <li>Total marks awarded = 2 out of 5</li> </ul>                                                              |

- **(c) (i)** Careful reading of the question was needed here: 250 cm<sup>3</sup> is the highest calibration mark on the measuring cylinder and not 'your reading of the volume of gas'.
- (c) (ii) The second reason given here was not valid, as any solid sticking to the side of the flask would indicate poor handling of the chemicals.

Mark awarded = (c) (i) 0/1, (ii) 2/4

Total marks awarded = 2 out of 5

## Common mistakes candidates made in this question

- **(c) (i)** The use of 250 cm<sup>3</sup> instead of the volume of gas collected was a fairly frequent error. A significant minority of candidates used an incorrect numerator in the calculation for the data given in (a).
- (c) (ii) 'Solid sticks to the sides of the flask' and 'gas remains in the delivery tube' were two reasons that were not given credit here. Although stating that 'the bung does not fit properly' was not creditworthy on its own (as the fit of the bung should be checked prior to starting the procedure), candidates who wrote this gained one mark out of the two if they also suggested a sensible way of stopping the gas leaking out.

# Question 3(a)

| _ | kample candidate response – high                                                                                                                                                                                                                                                      | Examiner comments |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|   | Qualitative Analysis                                                                                                                                                                                                                                                                  |                   |
|   | At each stage of any test you are to record details of the following.                                                                                                                                                                                                                 |                   |
|   | colour changes seen                                                                                                                                                                                                                                                                   |                   |
|   | the formation of any precipitate                                                                                                                                                                                                                                                      |                   |
|   | the solubility of such precipitates in an excess of the reagent added                                                                                                                                                                                                                 |                   |
|   | Where gases are released they should be identified by a test, <b>described in the appropriate place in your observations</b> .                                                                                                                                                        |                   |
|   | You should indicate clearly at what stage in a test a change occurs.  Marks are not given for chemical equations.  No additional tests for ions present should be attempted.                                                                                                          |                   |
|   |                                                                                                                                                                                                                                                                                       |                   |
|   | If any solution is warmed, a boiling tube MUST be used.                                                                                                                                                                                                                               |                   |
|   | If any solution is warmed, a boiling tube MUST be used.  Rinse and reuse test-tubes and boiling tubes where possible.                                                                                                                                                                 |                   |
|   | Rinse and reuse test-tubes and boiling tubes where possible.                                                                                                                                                                                                                          |                   |
|   | Rinse and reuse test-tubes and boiling tubes where possible.  Where reagents are selected for use in a test, the name or correct formula of                                                                                                                                           |                   |
|   | Rinse and reuse test-tubes and boiling tubes where possible.  Where reagents are selected for use in a test, the name or correct formula of                                                                                                                                           |                   |
|   | Rinse and reuse test-tubes and boiling tubes where possible.  Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.  (a) FA 5, FA 6, FA 7 and FA 8 are aqueous solutions of organic compounds. All of FA 5, FA 6, FA 7 |                   |

#### Example candidate response - high, continued **Examiner comments** Carry out the following tests on FA 5, FA 6, FA 7 and FA 8 and record your observations observations test FA 5 FA 6 FA7 FA 8 Use of sodium To a 1 cm depth in a test-tube, add a small carbonate suggests spatula measure of No observable Effervescence Effervescence limewater should be observable sodium carbonate. change occur change ready for use in testing any gas evolved. Mark for (a) (i) = 2/4To a few drops in a 2 test-tube, add a 1 cm Silver Grey No observable If the tube is not very depth of Tollens' 1 Grey mirror . reagent. Grey clean in a positive precipitate formed Place the tube in the solution form Tollens' test, then a water bath and leave formed to stand. produced black or dark grey When you have precipitate is likely to completed this test form, rather than the rinse all tubes used. To a 1 cm depth in a silver mirror expected. Purple test-tube, add a few Purple Purple No observable drops of acidified decolourise decolourise potassium change decolourise manganate(VII). Place the tube in the water bath and leave to stand. (ii) Using your observations from the table, what functional group is present in both FA 5 and Mark for (a) (ii) = 1/1Carboxylic acid (iii) Using your observations from the table, what functional group is present in both FA 5 and FA 8? Mark for (a) (iii) = 1/1alkette aldehyde (iv) What type of reaction is occurring in the potassium manganate(VII) test? Mark for (a) (iv) = 1/1(v) Using your observations from the table, what functional group is present in FA 7? Alkenes will alkene decolourise acidified potassium (vi) Suggest a test that would confirm the presence of the functional group in a pure sample of FA 7. Include the result you would expect the test to give. manganate(VII), as well as primary and Do not carry out this test. secondary alcohols. Add bromine solution Brown colour will decolourise Relevant correct chemistry is always awarded marks. Mark for (a) (v) = 1/1Mark for (a) (vi) = 1/1Total marks awarded = 7 out of 9

- (a) (i) The description of the precipitate formed with FA 5 needed greater precision.
- (a) (v) This answer did not take into account that the compound contains C, H and O.

Mark awarded = (a) (i) 2/4, (ii) 1/1, (iii) 1/1, (iv) 1/1, (v) 1/1, (vi) 1/1

Total marks awarded = 7 out of 9

| Exa | ample candidate response – middle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Examiner comments |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3 ( | Qualitative Analysis (1) First 1 has the second of the sec |                   |
| A   | at each stage of any test you are to record details of the following.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|     | colour changes seen the formation of any precipitate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| •   | the solubility of such precipitates in an excess of the reagent added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|     | Where gases are released they should be identified by a test, described in the appropriate place in your observations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| N   | ou should indicate clearly at what stage in a test a change occurs.  Marks are <b>not</b> given for chemical equations.  No additional tests for ions present should be attempted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| ľ   | fany solution is warmed, a boiling tube MUST be used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| F   | Rinse and reuse test-tubes and boiling tubes where possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
|     | Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| (   | a) FA 5, FA 6, FA 7 and FA 8 are aqueous solutions of organic compounds. All of FA 5, FA 6, FA 7 and FA 8 contain carbon, hydrogen and oxygen only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
|     | Half fill the 250 cm³ beaker with water and heat it to about 80 °C. Turn off the Bunsen burner. This will be used as a water bath.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
|     | To a 2cm depth of aqueous silver nitrate in a boiling tube add 2 drops of aqueous sodium hydroxide and then add ammonia dropwise until the brown solid just disappears. This solution is Tollens' reagent and is needed in a test in (i).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |

# Example candidate response - middle, continued

(i) Carry out the following tests on FA 5, FA 6, FA 7 and FA 8 and record your observations in the table.

| do ad                                                                                                                                                                             | observations                                                                           |                                                                                         |                                                         |                                                                                    |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------|--|--|
| test                                                                                                                                                                              | FA 5                                                                                   | FA 6                                                                                    | FA 7                                                    | FA 8                                                                               |  |  |
| To a 1 cm depth in a test-tube, add a small                                                                                                                                       | Na CO3 disslove                                                                        | Nacon dissolue                                                                          | No reaction                                             | Na Con                                                                             |  |  |
| spatula measure of sodium carbonate.                                                                                                                                              | some bubble given out react voliently red limus paper turn blue x                      | some gas produce 1 the tube become warm give white ppt wi                               | Na Ob, not<br>disslove<br>thCalOH)2                     | disslove.                                                                          |  |  |
| To a few drops in a test-tube, add a 1 cm depth of Tollens' reagent. Place the tube in the water bath and leave to stand. When you have completed this test rinse all tubes used. | liquid brome milkly warm after burn it turn brown and black 2                          | liquid become milkly after warm it turm pink.                                           | liquid still colourless after warm j-t turn deep-yellow | Some order  simle like  All liquid  turn yellow after warm  it just like a  mirror |  |  |
| To a 1cm depth in a test-tube, add a few drops of acidified potassium manganate(VII). Place the tube in the water bath and leave to stand.                                        | add k. MnO4 then siguid is pupple pupple limus paper turn red liquid become colourless | odd kmn04 then<br>liquid is pupple<br>pupple limus<br>paper turn red<br>colour unchange | liquid is yellow<br>liquid become<br>colour less        | add KMnQ then liquid is colourless liquid still colourless                         |  |  |

| (ii) | Using your ob | servations | from the table, | what functional | group is prese | ent in both I | <b>A</b> 5 and |
|------|---------------|------------|-----------------|-----------------|----------------|---------------|----------------|
|      | ACTO C        | HOOK .     | /               |                 |                |               |                |

- (iii) Using your observations from the table, what functional group is present in both FA 5 and FA 8?

  CHO
- (iv) What type of reaction is occurring in the potassium manganate(VII) test?

  Ondothem: C 3
- (v) Using your observations from the table, what functional group is present in FA 7?
- (vi) Suggest a test that would confirm the presence of the functional group in a pure sample of FA 7. Include the result you would expect the test to give.

| Do not carry out this test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | properties of the |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Do not carry out this test.  Add USD4 (aq.) to FA7, and shack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . Then it         |
| produce due ppt. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| man and the second seco |                   |

#### **Examiner comments**

- 1 'Bubbles' is an observation; 'gas produced' is a deduction. The incorrect formula for sodium carbonate is ignored here as it is not part of the observation nor a reagent selected by the candidate.
- 2 The change of state is not recorded with FA 5 and Tollens' reagent.

Mark for (a) (i) = 2/4

Mark for (a) (ii) = 1/1

Mark for (a) (iii) = 1/1

3 'Endothermic' shows some logical thinking as the instruction was to heat the reactants.

Mark for (a) (iv) = 0/1

Mark for (a) (v) = 1/1

4 It is possible that this is an attempt to describe the Fehling's test, which is not valid for an alcohol. If it were valid, then greater detail of method (heating) would be needed, as well as a correct observation to gain the mark.

Mark for (a) (vi) = 0/1

[9] 5

Total marks awarded = 5 out of 9

#### Paper 3 - Advanced Practical Skills

#### How the candidate could have improved their answer

- (a) (i) The observation of 'bubbles' was not given in the first test with FA 6. In the tests using Tollens' reagent with FA 6 and FA 7, some unexpected and incorrect colour changes were given. Several spellings were incorrect but the meaning was clear so there was no penalty.
- (a) (iv) FA 8 reacted fully before the stage of being heated so 'endothermic' did not follow from the observations.
- (a) (vi) A test suitable for confirming the presence of an alcohol (in part (v)) was needed here. The method (conditions for the reaction) and result should also have been given.

Mark awarded = (a) (i) 2/4, (ii) 1/1, (iii) 1/1, (iv) 0/1, (v) 1/1, (vi) 0/1

Total marks awarded = 5 out of 9

| Exan        | nple candidate response – low                                                                                                                                                                                                                                                                                                                                                                                                                                               | Examiner comments |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| 3 Qu        | alitative Analysis and 8.45 and 6.45 and 6.45 and 6.45 are rest grownliched from your dis-                                                                                                                                                                                                                                                                                                                                                                                  |                   |  |
| Whin You Ma | colour changes seen the formation of any precipitate the solubility of such precipitates in an excess of the reagent added here gases are released they should be identified by a test, described in the appropriate place your observations.  u should indicate clearly at what stage in a test a change occurs.  urks are not given for chemical equations.  additional tests for ions present should be attempted.  uny solution is warmed, a boiling tube MUST be used. |                   |  |
| Rin         | nse and reuse test-tubes and boiling tubes where possible.                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |  |
|             | Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.                                                                                                                                                                                                                                                                                                                                                        |                   |  |
| (a)         | FA 5, FA 6, FA 7 and FA 8 are aqueous solutions of organic compounds. All of FA 5, FA 6, FA 7 and FA 8 contain carbon, hydrogen and oxygen only.                                                                                                                                                                                                                                                                                                                            |                   |  |
|             | Half fill the 250 cm³ beaker with water and heat it to about 80 °C. Turn off the Bunsen burner. This will be used as a water bath.                                                                                                                                                                                                                                                                                                                                          |                   |  |
|             | To a 2cm depth of aqueous silver nitrate in a boiling tube add 2 drops of aqueous sodium hydroxide and then add ammonia dropwise until the brown solid just disappears. This solution is Tollens' reagent and is needed in a test in (i).                                                                                                                                                                                                                                   |                   |  |

#### Example candidate response - low, continued

(i) Carry out the following tests on FA 5, FA 6, FA 7 and FA 8 and record your observations in the table.

| toot                                                                                                                                                                              | observations                                                                  |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|
| test                                                                                                                                                                              | FA 5                                                                          | FA 6                                                               | FA 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FA 8                               |  |
| To a 1 cm depth in a test-tube, add a small                                                                                                                                       | Effervescence                                                                 | Effernsana                                                         | No ppt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No ppt                             |  |
| spatula measure of sodium carbonate.                                                                                                                                              | occur. colourless The time we got turn lime water was cloudy co, is 1 pregret | occur The colourless gas produced does not turn Time worker though | comons  conservation of the service | on ore exists<br>anothly of        |  |
| To a few drops in a test-tube, add a 1 cm depth of Tollens' reagent. Place the tube in the water bath and leave to stand. When you have completed this test rinse all tubes used. | Silver mirror is formed                                                       | Silver minor is formed.                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Silver minor is formed.            |  |
| To a 1 cm depth in a test-tube, add a few drops of acidified potassium manganate(VII). Place the tube in the water bath and leave to stand.                                       | Ruple solution<br>turn med-<br>brown ppt<br>solumbes<br>turn no ppt           | Purple solution remains purple offer heating                       | Purple solution remain purple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Purple solution<br>turn colourless |  |

| (ii) | Using your observations from the table, what functional group is present in both FA 5 and FA 6? |
|------|-------------------------------------------------------------------------------------------------|
|      |                                                                                                 |

aldehyde × 4

(iii) Using your observations from the table, what functional group is present in both FA 5 and FA 8?

alouhyde

(iv) What type of reaction is occurring in the potassium manganate(VII) test?

(v) Using your observations from the table, what functional group is present in FA 7?

(vi) Suggest a test that would confirm the presence of the functional group in a pure sample of FA 7. Include the result you would expect the test to give.

Do not carry out this test.

PNOH. DNPU tum orango ppt.

#### **Examiner comments**

- 1 The result of the gas test for FA 6 and sodium carbonate contradicts that for FA 5. The use of sodium carbonate should suggest the possibility of CO<sub>2</sub> being evolved.
- 2 The observations with FA 5 and FA 8 are correct. It is important to avoid contamination of samples.
- It is easy to add too much acidified potassium manganate(VII) in one go, so the colour change can be missed.

Mark for (a) (i) = 1/4

4 'Aldehyde' appears logical from the reported reactions with Tollens' reagent.

Mark for (a) (ii) = 0/1

Mark for (a) (iii) = 1/1

**5** A simpler correct response is 'redox'.

Mark for (a) (iv) = 0/1

6 Although 'ketone' has not come from any positive test, it is still possible to gain the mark for a correct confirmatory test and result.

Mark for (a) (v) = 0/1

Mark for (a) (iv) = 1/1

Total marks awarded = 3 out of 9

(a) (i) When testing with sodium carbonate, if both gas tests are carried out, they both need to be correct. The observations for Tollens' reagent and FA 6 and FA 7 were unexpected and incorrect, although those with FA 5 and FA 8 were fully correct.

When adding acidified potassium manganate(VII) it is important to add the few drops one at a time with shaking so that any colour change is easy to see.

- (a) (ii) It is important to consider all the observations when making conclusions: aldehydes do not effervesce with sodium carbonate.
- (a) (iv) Only half the answer was given here, as both oxidation and reduction were occurring; it is the organic compound that is being oxidised.
- (a) (v) The lack of reaction with any of the given reagents with FA 7 rule out carboxylic acid, aldehyde, primary and secondary alcohol and alkene, so ketone seems a logical choice. However, the deductions have to come from some positive observation.

Mark awarded = (a) (i) 1/4, (ii) 0/1, (iii) 1/1, (iv) 0/1, (v) 0/1, (vi) 1/1

Total marks awarded = 3 out of 9

#### Common mistakes candidates made in this question

- (a) (i) Many candidates omitted the gas test in the reactions with sodium carbonate. They need more practice making Tollens' reagent, as it was clear that this was an unfamiliar exercise. It is important for candidates to follow very carefully the instruction to add only a few drops when using acidified potassium manganate(VII), as a significant number of candidates reported the solution remaining purple when it should have turned colourless.
- (a) (iii) A significant minority of candidates concluded 'aldehyde' here, when only one of FA 5 and FA 8 gave positive results with Tollens' reagent. The mark could not be awarded as the conclusion contradicted the observations.
- (a) (iv) The most common error was to write 'oxidation'. This was an incomplete response; 'oxidation of organic compound' or 'redox' was needed.
- (a) (vi) A significant minority of candidates did not say how the test chosen would be carried out. Some left out any observation that would be made, gave an incorrect colour or omitted a change of state.

# Question 3(b)

|       | nple candidate respor                                                                                               |                                                                                                           |                                                                            | Examiner comments                                              |
|-------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|
| Ana   | 9 and FA 10 are solids that each calysis Notes on page 11.  Carry out the following tests on FA 9                   |                                                                                                           |                                                                            |                                                                |
|       | and fig on                                                                                                          | observ                                                                                                    | vations                                                                    |                                                                |
|       | test                                                                                                                | FA 9                                                                                                      | FA 10                                                                      |                                                                |
|       | To a spatula measure of solid in<br>a boiling tube, add a 1 cm depth<br>of aqueous sodium hydroxide.<br>Warm, then, | While PP+ was<br>Observed.                                                                                | No Change<br>Was obsered                                                   |                                                                |
|       | add a small piece of aluminium foil.                                                                                | Effervescense<br>Damo red litmus<br>byrned blue .                                                         | Efferescense. Dump rea litmus turned blue.                                 | 1 Stronger heating should have led to observations of a        |
|       | Place a spatula measure of solid in a hard-glass test-tube. Heat gently at first and then more strongly.            | Solid hyrned into<br>Liqual Effervescence<br>took place and<br>damp red Lithmus<br>turned blue x 1        | Ettervescense,<br>SZH melted and<br>byrned Into a<br>Gransparent solution. | brown gas or the solid turning yellow.  Mark for (b) (i) = 3/4 |
| (ii)  | Using your observations from the to FA 10?  anion Nitrole (NO3-)                                                    | 8890X8 (9 58/3)                                                                                           | pseu fost fact                                                             | Mark for (b) (ii) = 1/1  There may be                          |
| (iii) | Suggest a test that would allow you observations you would expect.  Add dilverceld and he presence of nitnie con    | confusion between the test to distinguish between nitrate and nitrite using acid and the test to show the |                                                                            |                                                                |
| (iv)  | Carry out this test on FA 9 and FA 1<br>observation for FA 9 NO CYMM<br>observation for FA 10 NO CYM                | presence of either anion using aqueous sodium hydroxide and aluminium.                                    |                                                                            |                                                                |
|       |                                                                                                                     |                                                                                                           | [/]                                                                        | Mark for (b) (iii) = 0/1                                       |
|       |                                                                                                                     |                                                                                                           |                                                                            | Mark for (b) (iv) = 1/1                                        |
|       |                                                                                                                     |                                                                                                           |                                                                            | Total marks awarded = 5 out of 7                               |

## How the candidate could have improved their answer

- **(b) (i)** As this section is about the identity of anions, red litmus turning blue (incorrect observation) indicated an ammonium cation, so further heating should have been carried out.
- **(b) (iii)** The name of the acid must be given to identify the reagent to be used. While only nitrite will give a gas with a dilute acid, ammonia was incorrect.

Mark awarded = (b) (i) 3/4, (ii) 1/1, (iii) 0/1, (iv) 1/1

Total marks awarded = 5 out of 7

| Exam  | ple candidate respon                                                                                          | Examiner comments                                                                  |                                                                   |                                                                                    |
|-------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Ana   | 9 and FA 10 are solids that each on<br>lysis Notes on page 11.  Carry out the following tests on FA 9         |                                                                                    |                                                                   |                                                                                    |
|       | test                                                                                                          | obser                                                                              | vations                                                           |                                                                                    |
|       | test                                                                                                          | FA 9                                                                               | FA 10                                                             |                                                                                    |
|       | To a spatula measure of solid in a boiling tube, add a 1 cm depth of aqueous sodium hydroxide.  Warm, then,   | The so<br>solution turn<br>white milky                                             | ne of w colorless solution formed                                 | 1 The presence of hydrogen formed by the reaction between                          |
|       | add a small piece of aluminium foil, e di status a foq suiti in the gravity and ordered primary and research. | slow<br>fizzing<br>pop sound when light                                            | vigorous Luc ham live ham fizzinglionus to red with pungent smell | aqueous sodium<br>hydroxide and<br>aluminium is shown.                             |
|       | Place a spatula measure of solid in a hard-glass test-tube. Heat gently at first and then more strongly.      | solid turn into<br>solir colorloss<br>2 liquid 1                                   | solid turnto<br>edorless liquid                                   | 2 Both solids melting is correct, but the effect of stronger heating is not shown. |
| (ii)  | Using your observations from the to FA 10?                                                                    | able, which <b>two</b> anions co                                                   | uld be present in FA 9 and                                        | Mark for (b) (i) = 1/4                                                             |
|       | anion $ND_2^-$                                                                                                | or                                                                                 | 03                                                                | Mark for (b) (ii) = 1/1                                                            |
| (iii) | Suggest a test that would allow you observations you would expect.  Add the solution                          | Mark for (b) (iii) = 1/1                                                           |                                                                   |                                                                                    |
| (iv)  | If there is brown go<br>Carry out this test on FA 9 and FA 1                                                  | 3 Bubbles should not have formed.                                                  |                                                                   |                                                                                    |
|       | abacquistion for EA a NO absorbation arise in EA a is NO2                                                     |                                                                                    |                                                                   | Mark for (b) (iv) = 0/1                                                            |
|       | observation for FA 10 bubbles                                                                                 | observation for FA 10 bubbles formed anion in FA 10 is \(\lambda{D}_2\) \(\sigma\) |                                                                   |                                                                                    |
|       | 3                                                                                                             |                                                                                    | 012                                                               | Total marks awarded = 3 out of 7                                                   |

**(b) (i)** The combination of aqueous sodium hydroxide and aluminium is a test for nitrate and nitrite so the gas evolved with both FA 9 and FA 10 needed to be tested with (damp) red litmus paper. There was no clear distinction between the effect of heating gently and strongly and only one observation for each solid (change of state) was given.

(b) (iv) Assumptions should not be made about the identities of the ions and the 'observations' fitting these identities should not be recorded.

Mark awarded = (b) (i) 1/4, (ii) 1/1, (iii) 1/1, (iv) 0/1

Total marks awarded = 3 out of 7

| Example candidate response – low                                                                                                                                                                                                                   |                                                                                                                                                                           |                                                                                                |                                        | Examiner comments                                                                                                                 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|
| <ul><li>(b) FA 9 and FA 10 are solids that each contain one anion from those listed in the Qualitative Analysis Notes on page 11.</li><li>(i) Carry out the following tests on FA 9 and FA 10 and record your observations in the table.</li></ul> |                                                                                                                                                                           |                                                                                                |                                        | The candidate observes that damp                                                                                                  |  |
|                                                                                                                                                                                                                                                    | test                                                                                                                                                                      | observations                                                                                   |                                        | red litmus paper has<br>turned blue but needed                                                                                    |  |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                           | FA 9 FA 10                                                                                     |                                        |                                                                                                                                   |  |
|                                                                                                                                                                                                                                                    | To a spatula measure of solid in a boiling tube, add a 1cm depth of aqueous sodium hydroxide. Warm, then,                                                                 | no change                                                                                      | no charge                              | to add 'gas' or 'ammonia'.  The observation of 'condensation' shows careful heating, but there is no observation made on stronger |  |
|                                                                                                                                                                                                                                                    | add a small piece of aluminium foil.                                                                                                                                      | damp red litmus<br>poper turns blue                                                            | A domp red binatus paper turns blue    |                                                                                                                                   |  |
|                                                                                                                                                                                                                                                    | Place a spatula measure of solid in a hard-glass test-tube. Heat gently at first and then more strongly.                                                                  | condensation at the                                                                            | condensation at the<br>top of the tube | heating.  Mark for (b) (i) = 0/4                                                                                                  |  |
|                                                                                                                                                                                                                                                    | 2 1400                                                                                                                                                                    |                                                                                                |                                        | Mark for (b) (ii) = 1/1                                                                                                           |  |
| (ii)                                                                                                                                                                                                                                               | Using your observations from the ta<br>FA 10?                                                                                                                             | 3 Reagents selected to be used in tests must be given their full names or the correct formula. |                                        |                                                                                                                                   |  |
|                                                                                                                                                                                                                                                    | observations you would poect.  Odd dilute acid , later the gas produced has brown obor , to it should contain NOS , otherwise it should contain NOS , otherwise it should |                                                                                                |                                        |                                                                                                                                   |  |
| (iii)                                                                                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                |                                        |                                                                                                                                   |  |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                           |                                                                                                |                                        | Mark for (b) (iii) = 0/1                                                                                                          |  |
| (iv)                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                                |                                        | 4 An incorrect observation shows possible guesswork in the final part.                                                            |  |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                           |                                                                                                |                                        | Mark for (b) (iv) = 0/1                                                                                                           |  |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                           |                                                                                                |                                        | Total marks awarded = 1 out of 7                                                                                                  |  |

**(b) (i)** While red litmus turning blue is correct, it must be clear that it is the gas reacting with the litmus paper and not splashes of the alkaline solution. The observation of 'effervescence', 'bubbles', or 'fizzing' was missing here.

There were several possible observations to be made on heating the two solids and a greater number of observations needed to be recorded.

- **(b)** (iii) This part was answered well, apart from not naming the acid reagent, as instructed at the start of Question 3.
- (b) (iv) As both FA 9 and FA 10 were nitrates, no brown gas should have been detected.

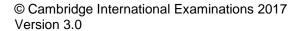
Mark awarded = (b) (i) 0/4, (ii) 1/1, (iii) 0/1, (iv) 0/1

Total marks awarded = 1 out of 7

#### Common mistakes candidates made in this question

**(b) (i)** Some candidates noted red litmus turning blue on warming with aqueous sodium hydroxide. As there was no ammonium ion present, this could only have resulted from poor technique: candidates may have allowed the solution to touch the litmus paper.

There were many candidates who wrote 'gas evolved' or similar when asked for an observation. 'Gas evolved' is a deduction and the observation should have been 'effervescence/bubbling/bubbles/fizzing/fizz'. The mark for red litmus turning blue when testing for ammonia will only be awarded if it is clear that the 'gas' or 'ammonia' is reacting with the litmus paper.


Many candidates gave only one observation on heating each of FA 9 and FA 10. It was apparent from many of the answers that the solids were not heated sufficiently strongly or for long enough.

- **(b) (ii)** Only a small number of candidates suggested cations instead of anions (such as ammonium) or gave an anion other than nitrate/nitrite.
- **(b) (iii)** Many candidates omitted the name of the acid to be used in the test. This was contrary to the instruction given on page 7: 'where reagents are selected for use in a test, the name or correct formula of the element or compound must be given'.

A significant number of candidates also omitted to state which of nitrate or nitrite reacted to produce the brown gas.

**(b) (iv)** 'Observing' a brown gas with either FA 9 or FA 10 was a common error. It is possible that some of these candidates were short of time so tested one of the unknowns with acid and found no brown gas and decided that the other unknown would contain the other anion.

Cambridge International Examinations 1 Hills Road, Cambridge, CB1 2EU, United Kingdom t: +44 1223 553554 f: +44 1223 553558 e: info@cie.org.uk www.cie.org.uk



