

Cambridge International AS & A Level

CHEMISTRY

Paper 3 Advanced Practical Skills 2 MARK SCHEME Maximum Mark: 40 9701/36 October/November 2024

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

This document consists of **11** printed pages.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Science-Specific Marking Principles

- 1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly.
- 2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored.
- 3 Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection).
- 4 The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted.

5 <u>'List rule' guidance</u>

For questions that require *n* responses (e.g. State **two** reasons ...):

- The response should be read as continuous prose, even when numbered answer spaces are provided.
- Any response marked *ignore* in the mark scheme should not count towards **n**.
- Incorrect responses should not be awarded credit but will still count towards *n*.
- Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should **not** be awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this should be treated as a single incorrect response.
- Non-contradictory responses after the first *n* responses may be ignored even if they include incorrect science.

6 <u>Calculation specific guidance</u>

Correct answers to calculations should be given full credit even if there is no working or incorrect working, **unless** the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^n$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 <u>Guidance for chemical equations</u>

Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.

State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

Question	Answer	Marks
1(a)	I Unambiguous headings and correctly displayed units (Mass of) container + FB 1 (Mass of) container (Mass of) FB 1 (Volume of) gas / CO ₂ Units: / g, (cm ³), in g next to each entry II Both balance readings are recorded either to 2 dp or to 3 dp and mass of FB 1 is correctly calculated III Volume of gas is recorded correct to 1 cm ³ IV Volume of gas is between 50 and 250 cm ³	4
1(b)(i)	All answers to (b)(ii), (b)(iii) and (b)(iv) given to 2–4 sf.	1
1(b)(ii)	Correctly calculates Amount of $CO_2 = \frac{Volume of gas}{24000} mol$	1
1(b)(iii)	Correctly uses Amount of $Na_2CO_3 = (b)(ii)$ mol and Mass of $Na_2CO_3 = (b)(ii) \times 106$ g	1
1(b)(iv)	Shows % purity = $\frac{\text{mass from (iii)} \times 100}{\text{mass of FB 1 in (a)}}$	1
1(c)	Some means of mixing solid and acid after bung inserted – e.g. little tube suspended / flask with shelf / divided flask.	1
1(d)	Use hot water / saturate water with CO ₂	1

Question	Answer	Marks
1(e)	2 dp balance uncertainty, U = 0.01 g or 0 .005 g 3 dp balance uncertainty, U = 0.001 g or 0.0005 Correct expression for maximum % error = $\frac{(2 \times U) \times 100}{\text{mass FB1}}$	1

Question	Answer	Marks
2(a)	I Unambiguous headings and correct units – no data needed. Headings (mass of) crucible + lid (mass of) crucible + lid + FB 3 (mass of) FB 3 added (mass of) crucible + lid + contents / residue after 1st heating (mass of) crucible + lid + contents / residue after 2nd heating (mass of) residue (mass of) CO ₂ /mass loss	
	II No more than + 0.02 g or – 0.05 g between first and second balance readings after heating. and All specified balance readings shown to the same number of dp – either 2 dp or 3 dp	
	III Correctly calculates mass of FB 3 and mass of carbon dioxide and mass of residue	
	IV Accuracy within 0.80 to $1.20 \times$ supervisor value V Accuracy within 0.90 to $1.10 \times$ supervisor value	5
2(b)(i)	Correctly calculates amount of CO_2 = mass $CO_2/44$ mol and answer given to 2–4 sf	1
2(b)(ii)	Correctly uses mass MgCO ₃ = (b)(i) \times 84.3 g and answer given to 2–4 sf	1

Question	Answer	Marks
2(b)(iii)	Correctly uses % MgCO ₃ = $\frac{(b)(ii) \times 100}{mass FB 3}$ and % Na ₂ CO ₃ = 100 - % MgCO ₃ and answer given to 2–4 sf	1
2(c)(i)	pH ≥ 9 and temperature goes up	1
2(c)(ii)	MgO(s) + H ₂ O(I) → Mg(OH) ₂ (s / aq) ΔH -ve M1 correct species M2 correct state symbols and sign follows temperature change (should be -ve ΔH)	2
2(c)(iii)	M1 add named (dilute) acid / correct formula M2 fizzing / bubbles / effervescence or gas / CO ₂ will give / gives a white ppt with limewater	2

Question	Answer	Marks
	FB 4 = $ZnSO_4 \cdot 7H_2O$ and NH_4Cl	
3(a)	M1-3 (Observations are in the expected order) (gentle heating towards stronger heating) condensation / steam produced * (gas given off and) litmus goes blue * sublimation/solid on colder tube * solid dissolves / melts * (solution / liquid) bubbles * white smoke * (then) litmus goes red * residue is white/grey (on cooling) * 8 * available: 2 * = 1 mark (round down, max 3) M4	4
	Ammonia/hydrogen chloride/sulfur trioxide from correct observation (name or correct formula)	

Question	Answer	Marks
3(b)(i)	Test 1 with sodium hydroxide white ppt * soluble in excess * then with Al and warm fizz/bubbling/effervescence * ammonia/gas turns litmus blue * Al turns black/dark grey (solid) / disappears * Test 2 with nitric acid no change / no reaction / no fizzing * then silver nitrate white ppt * Test 3 with barium chloride or barium nitrate white ppt * then nitric acid no change * Test 4 with sodium carbonate white ppt * 2 * = 1 mark (round down)	5
3(b)(ii)	M1 chloride / C1-	2
	M2 sulfate / SO ₄ ²⁻	

Question	Answer	Marks
3(b)(iii)	M1 table to show minimum of 2 tests with suitable headings and 'Test' and 'Observation' (owtte) tabulated and 'Conclusion' either tabulated or under the 'reagents and results' table.	5
	Testing for Zn ²⁺ or A <i>l</i> ³⁺ M2 (aqueous) ammonia to solution of FB 4 M3 white ppt soluble in excess and Zn ²⁺	
	Testing for NH₄ ⁺ M4 (aqueous) sodium hydroxide and warm (without aluminium) M5 gas / ammonia turns (damp red) litmus blue (ammonia formed) and NH₄ ⁺	