

This document consists of 12 printed pages.

© Cambridge University Press & Assessment 2024

[Turn over

Cambridge International AS & A Level

COMPUTER SCIENCE 9618/22

Paper 2 Fundamental Problem-solving and Programming Skills October/November 2024

MARK SCHEME

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the
examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the
details of the discussions that took place at an Examiners’ meeting before marking began, which would have
considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for
Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most
Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level
components.

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2024

© Cambridge University Press & Assessment 2024 Page 2 of 12

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers.
They should be applied alongside the specific content of the mark scheme or generic level
descriptions for a question. Each question paper and mark scheme will also comply with these
marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

• the specific content of the mark scheme or the generic level descriptors for the question

• the specific skills defined in the mark scheme or in the generic level descriptors for the question

• the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

• marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
is given for valid answers which go beyond the scope of the syllabus and mark scheme,
referring to your Team Leader as appropriate

• marks are awarded when candidates clearly demonstrate what they know and can do

• marks are not deducted for errors

• marks are not deducted for omissions

• answers should only be judged on the quality of spelling, punctuation and grammar when these
features are specifically assessed by the question as indicated by the mark scheme. The
meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed
instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question
(however; the use of the full mark range may be limited according to the quality of the candidate
responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should
not be awarded with grade thresholds or grade descriptors in mind.

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2024

© Cambridge University Press & Assessment 2024 Page 3 of 12

Mark scheme abbreviations

/ separates alternative words / phrases within a marking point
// separates alternative answers within a marking point
underline actual word given must be used by candidate (grammatical variants accepted)
max indicates the maximum number of marks that can be awarded
() the word / phrase in brackets is not required, but sets the context

Note: No marks are awarded for using brand names of software packages or hardware.

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2024

© Cambridge University Press & Assessment 2024 Page 4 of 12

Question Answer Marks

1(a) (Corrective) Maintenance 1

1(b) For example:

• Set a breakpoint at the start of / within Lookup, to stop execution at a

given statement

• then use single stepping to execute one statement / instruction at a time

• to display the value of variables using a watch window

One mark for each:

MP1 Order starting with a breakpoint and an explanation – ‘stop execution
at this statement / line’
MP2 Explanation of single stepping – execute ‘line by line’ / statements
MP3 Explanation of watch window – displaying the value of variable(s)

3

1(c) Features include:

MP1 Editor
MP2 Auto- (syntax) complete / auto correction // identify undeclared
variables(s)
MP3 Prettyprint / auto-indentation / auto (structure) highlighter
MP4 Dynamic syntax checking
MP5 Expand / collapse code blocks
MP6 Context sensitive prompts

Max 2 marks

2

1(d) One mark per row:

Variable name Used to store Data type

Name a customer name STRING

Index an array index INTEGER

Result
the result of the division of any two non-zero
numbers

REAL

3

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2024

© Cambridge University Press & Assessment 2024 Page 5 of 12

Question Answer Marks

2(a) Example ‘loop solution’:

FUNCTION Conceal(CardNumber : STRING) RETURNS STRING

 DECLARE MaskedString : STRING

 DECLARE Count : INTEGER

 CONSTANT Asterisk = '*'

 MaskedString RIGHT(CardNumber, 4)

 FOR Count 1 TO LENGTH(CardNumber) - 4

 MaskedString Asterisk & MaskedString

 NEXT Count

 RETURN MaskedString

ENDFUNCTION

Mark as follows:
MP1 Function heading and parameter and ending and return type
MP2 Declaration of all local variables used - including the loop counter
MP3 Calculate number of digits to mask / number of asterisks required

MP4 use of a ‘relevant’ Loop
MP5 Correct number of iterations
MP6 Concatenate asterisk to start/end of MaskedString in a loop

MP7 Assign last four characters to MaskedString // Concatenate the

retained original last four digits
MP8 Return masked string

Max 6 marks

ALTERNATIVE ‘non loop’ solution:

FUNCTION Conceal(CardNumber : STRING) RETURNS STRING

 DECLARE MaskedString : STRING

 DECLARE Count : INTEGER

 CONSTANT Asterisks = "********************" //20

asterisks

 Count LENGTH(CardNumber) - 4

 MaskedString LEFT(Asterisks, Count) &

RIGHT(CardNumber, 4)

 RETURN MaskedString

ENDFUNCTION

Mark as follows:
MP1 Function heading and parameter and ending and return type
MP2 Declaration of all local variables used
MP3 Calculate number of digits to mask / number of asterisks required

6

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2024

© Cambridge University Press & Assessment 2024 Page 6 of 12

Question Answer Marks

2(a) MP4 Trim asterisk string to number calculated in MP3
MP5 Extract the last four characters
MP6 Concatenate trimmed asterisk string with last four characters of

CardNumber

MP7 Return masked string

Max 6 marks

2(b)(i) DECLARE CardNumber : ARRAY [1:100, 1:2] OF STRING

MP1 Correct dimensions
MP2 All other parts of the statement correct

2

2(b)(ii) Any reference to BYREF // ‘by reference’ 1

Question Answer Marks

3(a)(i) SP: 1

OnStack: 0

One mark for both correct values

1

3(a)(ii) MP1 Unused values cannot be popped / taken off the stack // initialised
values would never be used / unused elements cannot be accessed

MP2 ... until a value has first been pushed / written // overwrites previous

value

2

3(b) Example solution:

FUNCTION Push(ThisValue : REAL) RETURNS BOOLEAN

 DECLARE ReturnValue : BOOLEAN

 IF OnStack = 60 / >59 // SP = 61 / SP > 60 //

 SP outside the range 1 to 60 THEN
 RETURN FALSE // Stack is already full

 ENDIF

 ThisStack[SP] ThisValue

 SP SP + 1

 OnStack OnStack + 1

 RETURN TRUE

ENDFUNCTION1

Mark as follows:
One mark per gap

4

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2024

© Cambridge University Press & Assessment 2024 Page 7 of 12

Question Answer Marks

4 Example solution:

PROCEDURE Timer(Mins, Secs : INTEGER)

 DECLARE WarningTick, EndTick : INTEGER

 EndTick Tick + 1000 * ((Mins * 60) + Secs)

 WarningTick EndTick - (30 * 1000)

 REPEAT

 //do nothing

 UNTIL Tick = WarningTick

 OUTPUT "30 seconds to go"

 REPEAT

 //do nothing

 UNTIL Tick = EndTick

 OUTPUT "The time is up!"

ENDPROCEDURE

Mark as follows:
MP1 Procedure heading and parameters and ending
MP2 ‘Attempt’ to calculate ‘total time’/EndTick // ‘elapsed time’ //

WarningTick

MP3 Correct calculation of EndTick and WarningTick

MP4 (Design mark)

• Two separate loops – checking warning time then the final time,
OR …

• Single loop checking the final time with an IF statement to check
for warning time, OR …

• Single loop with two IF statements checking the warning time and
final time

MP5 Completely correct MP4
MP6 Output both messages (must be meaningful and follow successful

MP4)

6

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2024

© Cambridge University Press & Assessment 2024 Page 8 of 12

Question Answer Marks

5(a) MP1 Count INT(100 / Number)

Number could be zero (giving a divide by zero)

MP2 Index Data[Number]

Potential error: Value Number could be outside the range of array indices

MP3 ReturnValue TO_UPPER(RIGHT(Label, Count))

Potential Error: Number to extract may be too big / negative / out of range for
use in the RIGHT function // Label has insufficient characters

MP4 RETURN RetVal

Potential Error: There is no value to be returned // there is no variable named
RetVal

Mark as follows:

1 mark for each statement and description

Max 3 marks

3

5(b) MP1 Construct: A (pre/post) conditional loop
MP2 Explanation: The terminating condition is never satisfied

2

5(c) Example solution:

IF Index Mod 2 = 0 THEN

 ReturnValue TO_UPPER(RIGHT(Label, Count))

ELSE

 ReturnValue "****"

ENDIF

Mark as follows:
MP1 IF...THEN...ELSE...ENDIF

MP2 Both correct assignments and the correct test/logic

2

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2024

© Cambridge University Press & Assessment 2024 Page 9 of 12

Question Answer Marks

6(a) Example solution:

PROCEDURE Special()

 DECLARE Index : INTEGER

 DECLARE Filling1, Filling2 : STRING

 REPEAT

 Index INT(RAND(35)) + 1

 UNTIL Filling[Index] <> ""

 Filling1 Filling[Index]

 REPEAT

 Index INT(RAND(35)) + 1

 UNTIL Filling[Index] <> "" AND Filling1 <>

Filling[Index]

 Filling2 Filling[Index]

 REPEAT

 Index INT(RAND(10) + 1)

 UNTIL Bread[Index] <> ""

 OUTPUT "The daily special is ", Filling1, " and ", __

 Filling2, " on ", Bread[Index], " bread."

ENDPROCEDURE

Mark as follows:
MP1 Loop for Filling 1, avoiding unused elements
MP2 Loop for Filling 2 avoiding unused elements
MP3 Check Filling 2 is different from Filling 1 – could correctly compare

either the indices or the array contents

MP4 Loop for Bread, avoiding unused elements

MP5 Using RAND(10) / RAND(35)

MP6 Completely correct use of RAND() - including INT()and +1 in all

cases

MP7 Correct output - once only – following a reasonable attempt at

selection of filings and bread

7

6(b) Answers include:

MP1 For each filling, create a list of acceptable / incompatible

fillings/indexes
MP2 When selecting the second filling, (as well as checking for an unused

element) check that the filling / index is / is not on the list

ALTERNATIVE:
MP1 Create a list of ‘good’ combinations
MP2 Randomly select from this list

2

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2024

© Cambridge University Press & Assessment 2024 Page 10 of 12

Question Answer Marks

7(a) • Customer ID – to reference the other customer details

• Email address – to send the email

• Name – to personalise the email

• Date of last visit – to select which customers should receive an email

• Unique voucher code (or method of code generation) – to include in the
email

Mark as follows:

One mark per item and justification

Max 3 marks

3

7(b) Abstraction 1

7(c) MP1 Data structures // data dictionary // identifier table(s) // validation rules
MP2 Data-flow diagram // state-transition diagram
MP3 User interface // Format for the email
MP4 Testing method / Test plan / Test data / Trace tables
MP5 Choice of email protocol to be used // Programming language to be

used // Development environment
MP6 Use of library routines // program to send the email

Max 3 marks

3

7(d)

MP1 Three boxes correctly labelled and correct hierarchy
MP2 Parameter and return values
MP3 Iteration arrow

3

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2024

© Cambridge University Press & Assessment 2024 Page 11 of 12

Question Answer Marks

8(a) Example solution:

PROCEDURE Assign(ThisRole : STRING, ThisPlayer : INTEGER)

 DECLARE Index : INTEGER

 DECLARE Done : BOOLEAN

 Done FALSE

 Index 1

 WHILE Index < 46 AND Done = FALSE

 IF Character[Index].Player = 0 AND __

 Character[Index].Role = ThisRole THEN

 Character[Index].Player ThisPlayer

 Done TRUE

 ELSE

 Index Index + 1

 ENDIF

 ENDWHILE

 IF Done = TRUE THEN

 OUTPUT Character[Index].Name, " the ",__

 Character[Index].Role, __

 " has been assigned to player ", ThisPlayer

 ELSE

 OUTPUT "No characters with this role are available"

 ENDIF

ENDPROCEDURE

Mark as follows:
MP1 Loop until ‘found’ or all 45 elements considered
MP2 Test of Player field – i.e. not value in a loop

MP3 ... AND Role – i.e. match for ThisRole parameter in a loop

MP4 If available character found, assign ThisPlayer to the character in a

loop
MP5 When character found set termination condition/flag
MP6 Both OUTPUT messages logically correctly placed

MP7 Both OUTPUT statements correctly formed

7

9618/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November
2024

© Cambridge University Press & Assessment 2024 Page 12 of 12

Question Answer Marks

8(b) Example solution:

PROCEDURE Save()

 DECLARE Index : INTEGER

 DECLARE Line : STRING

 CONSTANT SEP = '^'

 OPENFILE "SaveFile.txt" FOR WRITE

 FOR Index 1 TO 45

 Line NUM_TO_STR(Character[Index].Player) & SEP

 Line Line & Character[Index].Role & SEP

 Line Line & Character[Index].Name & SEP

 Line Line & NUM_TO_STR(Character[Index].Level)

 WRITEFILE "SaveFile.txt", Line

 NEXT Index

 CLOSEFILE "SaveFile.txt"

ENDPROCEDURE

Mark as follows:
MP1 Declaration of local integer for Index (and string type for Line)

MP2 Open "SaveFile.txt" in write mode and subsequently close

MP3 Loop through 45 elements

MP4 Attempt to form Line - four fields in a loop

MP5 Correct use of NUM_TO_STR()x2 (Player and Level) in a loop

MP6 Correct use of three &<separator>& strings in a loop

MP7 Line from MP4 written to file in a loop

7

8(c) MP1 Encode Status as a character / string

MP2 Append the ‘^’ separator and the character/string

2

8(d) MP1 Method:
Create a filename suffix which is incremented for each file save

MP2 Example:
SaveFile01.txt, SaveFile02.txt

2

