

Version 2

Scheme of Work

Cambridge International AS & A Level
Computer Science 9618

For examination from 2021

Copyright © UCLES March 2019 (updated December 2021)
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of
Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we
cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Contents

Contents .. 3

Introduction .. 4

Unit 1 Information Representation ... 9

Unit 2 Communication ... 12

Unit 3 Hardware ... 15

Unit 4 Processor Fundamentals .. 18
Unit 5 System Software ... 21

Unit 6 Security, Privacy and Data Integrity .. 23

Unit 7 Ethics and Ownership ... 25

Unit 8 Databases ... 27

Unit 9 Algorithm Design and Problem Solving... 30

Unit 10 Data Types and Structures ... 32
Unit 11 Programming ... 35

Unit 12 Software Development .. 38

Unit 13 Data Representation ... 41

Unit 14 Communication and Internet Technologies .. 44

Unit 15 Hardware and Virtual Machines .. 46

Unit 16 System Software ... 48
Unit 17 Security ... 50

Unit 18 Artificial Intelligence (AI) .. 51

Unit 19 Computational Thinking and Problem-Solving .. 53

Unit 20 Further Programming .. 57

Scheme of Work

 4

Introduction

This scheme of work has been designed to support you in your teaching and lesson planning. Making full use of this scheme of work will help you to improve both
your teaching and your learners’ potential. It is important to have a scheme of work in place in order for you to guarantee that the syllabus is covered fully. You
can choose what approach to take and you know the nature of your institution and the levels of ability of your learners. What follows is just one possible approach
you could take and you should always check the syllabus for the content of your course.

Suggestions for independent study (I) and formative assessment (F) are also included. Opportunities for differentiation are indicated as Extension activities; there is
the potential for differentiation by resource, grouping, expected level of outcome, and degree of support by teacher, throughout the scheme of work. Timings for
activities and feedback are left to the judgement of the teacher, according to the level of the learners and size of the class. Length of time allocated to a task is
another possible area for differentiation.

Key concepts
This scheme of work is underpinned by the assumption that Computer Science is a practical subject and learners should be engaged in practical activities throughout
the course. The key concepts are highlighted as a separate item in the new syllabus. Reference to the key concepts is made throughout the scheme of work using
the key shown below.

Key Concept 1 (KC1) – Computational thinking
Computational thinking is a set of fundamental skills that help produce a solution to a problem. Skills such as abstraction, decomposition and algorithmic thinking are
used to study a problem and design a solution that can be implemented. This may involve using a range of technologies and programming languages.

Key Concept 2 (KC2) – Programming paradigms
A programming paradigm is a way of thinking about or approaching problems. There are many different programming styles that can be used, which are suited to
unique functions, tools and specific situations. An understanding of programming paradigms is essential to ensure that they are used appropriately, when designing
and building programs.

Key Concept 3 (KC3) – Communication
Communication is a core requirements of computer systems. It includes the ability to transfer data from one device or component to another and an understanding of
the rules and methods that are used in this data transfer. Communication could range from the internal transfer of data within a computer system, to the transfer of a
video across the internet.

Scheme of Work

 5

Key Concept 4 (KC4) – Computer architecture and hardware
Computer architecture is the design of the internal operation of a computer system. It includes the rules that dictate how components and data are organised, how
data are communicated between components, to allow hardware to function. There is a range of architectures, with different components and rules, that are
appropriate for different scenarios.
All computers comprise of a combination of hardware components, ranging from internal components, such as the Central Processing Unit (CPU) and main memory,
to peripherals. To produce effective and efficient programs to run on hardware, it is important to understand how the components work independently and together to
produce a system that can be used. Hardware needs software to be able to perform a task. Software allows hardware to become functional. This enables the user to
communicate with the hardware to perform tasks.

Key Concept 5 (KC5) – Data representation and structures
Computers use binary and understanding how a binary number can be interpreted in many different ways is important. Programming requires an understanding of
how data can be organised for efficient access and/or transfer.

Guided learning hours
Guided learning hours give an indication of the amount of contact time teachers need to have with learners to deliver a particular course. Our syllabuses are
designed around 180 hours for Cambridge International AS Level, and 360 hours for Cambridge International A Level. The number of hours may vary depending on
local practice and your learners’ previous experience of the subject. The table below gives some guidance about how many hours are recommended for each topic.

Topic

Suggested teaching time (hours) Suggested teaching order

1 Information representation 12 1

2 Communication 16 4

3 Hardware 11 2

4 Processor Fundamentals 15 3

5 System Software 8 7

6 Security, privacy and data integrity 8 6

7 Ethics and Ownership 6 5

8 Databases 18 9

9 Algorithm Design and Problem-Solving 28 Continuous through AS Level

10 Data Types and structures 22 Continuous through AS Level

Scheme of Work

 6

Topic

Suggested teaching time (hours) Suggested teaching order

11 Programming 24 Continuous through AS Level

12 Software Development 12 8

13 Data Representation 15 10

14 Communication and internet technologies 15 13

15 Hardware and Virtual Machines 15 11

16 System Software 15 12

17 Security 10 14

18 Artificial Intelligence (AI) 10 15

19 Computational thinking and problem solving 50 Continuous through A Level

20 Further Programming 50 Continuous through A Level

Scheme of Work

 7

Resources
You can find the endorsed resources to support Cambridge International AS & A Level Computer Science 9618 on the Published resources tab of the syllabus page
on our public website here.

Endorsed textbooks have been written to be closely aligned to the syllabus they support, and have been through a detailed quality assurance process. All textbooks
endorsed by Cambridge International for this syllabus are the ideal resource to be used alongside this scheme of work as they cover each learning objective. In
addition to reading the syllabus, teachers should refer to the specimen assessment materials.

School Support Hub
The School Support Hub www.cambridgeinternational.org/support is a secure online resource bank and community forum for Cambridge teachers, where you can
download specimen and past question papers, mark schemes and other resources. We also offer online and face-to-face training; details of forthcoming training
opportunities are posted online. This scheme of work is available as PDF and an editable version in Microsoft Word format; both are available on the School Support
Hub at www.cambridgeinternational.org/support If you are unable to use Microsoft Word you can download Open Office free of charge from www.openoffice.org

Websites
This scheme of work includes website links providing direct access to internet resources. Cambridge Assessment International Education is not responsible for the
accuracy or content of information contained in these sites. The inclusion of a link to an external website should not be understood to be an endorsement of that
website or the site’s owners (or their products/services).

The website pages referenced in this scheme of work were selected when the scheme of work was produced. Other aspects of the sites were not checked and only
the particular resources are recommended.

https://www.cambridgeinternational.org/programmes-and-qualifications/cambridge-international-as-and-a-level-computer-science-9618/published-resources/
http://www.cambridgeinternational.org/support
http://www.cambridgeinternational.org/support
http://www.openoffice.org/

Scheme of Work

 8

How to get the most out of this scheme of work – integrating syllabus content, skills and teaching strategies
We have written this scheme of work for the Cambridge International AS & A Level Computer Science 9618 syllabus and it provides some ideas and suggestions of
how to cover the content of the syllabus. We have designed the following features to help guide you through your course.

Learning objectives help your learners by making it
clear the knowledge they are trying to build. Pass
these on to your learners by expressing them as ‘We
are learning to / about…’.

Extension activities provide your
abler learners with further
challenges beyond the basic
content of the course. Innovation
and independent learning are the
basis of these activities.

Past papers, specimen papers and mark schemes
are available for you to download at:
www.cambridgeinternational.org/support

Using these resources with your learners allows you to
check their progress and give them confidence and
understanding.

Formative assessment (F) is ongoing assessment
which informs you about the progress of your learners.
Don’t forget to leave time to review what your learners
have learnt: you could try question and answer, tests,
quizzes, ‘mind maps’, or ‘concept maps’. These kinds of
activities can be found in the scheme of work.

Suggested teaching activities give you lots of
ideas about how you can present learners with
new information without teacher talk or videos.
Try more active methods which get your
learners motivated and practising new skills.

Independent
study (I) gives
your learners
the opportunity
to develop their
own ideas and
understanding
with direct input
from you.

http://www.cambridgeinternational.org/support

Scheme of Work

 9

Unit 1 Information Representation

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

1.1 Data
Representation
(binary)
(KC5)

Convert a number
from one base to
another.

Perform binary
additional and
subtraction.

Explain the purpose
and benefits of
different number
bases.

Learners should practise converting from one number base to another. Start with unsigned 8-bit binary: ask
learners to count using binary for example starting with 0, then writing the binary for 1, 2, 3, etc. Challenge
learners to work out the largest number they can represent with a set number of bits, e.g. 16 bits. (F) Ask
learners to also identify the quantity of different numbers that can be represented and how this is different to the
largest number. (I)

Extension: Ask learners to program a binary number generator that creates binary numbers for learners to work
out and then checks if they are correct. This can be extended with other number bases. (I)

Show learners a large binary number and ask learners to copy it and what the difficulties are: e.g. easy to make
mistakes, difficult to remember. Show learners BCD as an alternative for representing a binary number and ask
learners why this could be beneficial. Repeat with the hexadecimal representation and ask learners to research
and find examples of where hexadecimal is used in computers. (I)

Ask learners what the limitations are of unsigned binary; i.e. it can only represent positive whole numbers. Show
learners how to use ones’ and two’s complement to represent negative numbers.

Show learners how to add binary numbers, introducing the rules of addition and why these work. Explore
overflow in addition and then how subtraction can just be the addition of a negative number. Extension: Ask
learners to explore how a computer handles overflow, e.g. interrupts, additional registers. (I)

1.1 Data
representation
(character sets)
(KC5)

Explain the use of
character sets in
computer systems.

Use ASCII, extended
ASCII and Unicode
to represent textual
data.

Provide learners with an ASCII table (or other character set) and ask them to write a message to another
learners. Ask learners to swap their messages and decipher them.

Discuss the need for character sets in computer systems and why different sets exist. Ask learners to explore the
difference between ASCII and extended ASCII, then repeat with Unicode. Discuss the benefits and drawbacks of
each, e.g. file size and range of characters. Show learners the relationship between characters, e.g. how the
binary values increase for consecutive values.

Extension: Ask learners to develop their own character set and write a computer program to read the binary (or
hexadecimal) value and display the characters. (I)

Scheme of Work

 10

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

1.2 Multimedia
(Graphics)
(KC5)

Explain how a bitmap
image is represented
and stored on a
computer.

Explain how a vector
graphic is
represented and
stored on a
computer.

Explain whether a
bitmap image of
vector graphic is
more appropriate for
a given task.

Give learners a grid with a number in each square and a table with the numbers and colours. Ask learners to use
the table and grid to colour the image. Repeat with the numbers for the grid separate, in binary (e.g. 4 bits per
square) and in one long string. Discuss how the grid represents a bitmap image and how the colours are
represented by binary numbers.

Link back to binary numbers and how many combinations you can have for a set number of bits, e.g. 4 bits can
have 16 different combinations. Ask learners how this relates to the number of colours.

Students should maintain a glossary of key terms for graphics. Add colour depth, bit depth, etc., as they are
covered. (F)

Provide learners with a set of instructions to create an image – e.g. coordinates to draw lines, colours to fill – to
represent how a vector graphic is stored. Students should add the key vector graphic terms to their glossary.

Ask learners to compare the two methods of storing images and the relative merits and drawbacks. Provide
learners with a scenario and ask them to work in pairs or groups to identify whether a vector or bitmap is more
appropriate and to justify their choice. (I)

Extension: Students can develop an interactive quiz of key terms, for example as a program or by integrating
code into a PowerPoint presentation. (F)

Extension: Explore image manipulation software, how bitmap and vector graphics can be edited, and what
restrictions there are in each type of image. (I)

1.2 Multimedia
(Sound)
(KC5)

Explain how an
analogue sound
wave is digitised.

Explain the effect of
changing the sample
rate and resolution
on a sound wave.

Give learners a graph with axis and a series of numbers. Ask learners to plot the numbers on the graph and then
join these to create a digital sound wave. Show learners the original analogue wave and explore the differences
between them.

Students should maintain a glossary of key terms for sound theory. (F)

Give learners a diagram of an analogue sound wave with amplitudes on the y axis. Give them an example
sample rate and ask them to recreate the analogue wave in digital. Repeat this with different sample rates and
ask them to explain the differences between the sound waves and how these would impact the file size and
resulting sound.
Extension: Ask learners to record a sample sound in software such as Audacity (www.audacityteam.org), and to
them manipulate the sound wave. Ask them to record the sound at different sample rates, to change the wave
and see what the results are. (I)

https://www.audacityteam.org/

Scheme of Work

 11

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

1.3 Compression
(KC5)

Explain the need for
compression.

Explain the
difference between
lossy and lossless
compression.

Recommend lossy or
lossless compression
for a given scenario
and justify the
choice.

Show how a
sound/image/text can
be compressed using
run-length encoding.

Ask learners what they do when they need to send a file by email but it is too large – do they upload it to the
cloud? Change the format? Compress it?

Show learners an example of lossy and lossless compression on the same document (e.g. an image) before and
after each method and explain the difference in the results.

Give learners a list of documents, e.g. image for a website, program code, text document. Ask learners to decide
whether each one should be compressed using lossy or lossless compression, and why.

Give learners a specific type of file (e.g. text, image, sound) and ask them to find examples of how they can be
compressed using lossy/lossless, and to then describe these to the rest of the learners. (I)

Give learners an image that has been encoded using RLE, for example 3B, 4R, 2Y and ask them what they think
it means. Ask them if they can replicate the image from the code. (I) Show learners how run-length encoding
works on different types of file, e.g. images, text files, etc.

Extension: Students can explore other methods of compression, e.g. Huffman encoding. (I)
https://www.geeksforgeeks.org/huffman-coding-greedy-algo-3/
https://people.ok.ubc.ca/ylucet/DS/Huffman.html

Extension: Students can write a program to compress a string (or text file) using run-length encoding (I)
https://www.techiedelight.com/run-length-encoding-rle-data-compression-algorithm/

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)
9618/1 Specimen paper Q1

https://www.geeksforgeeks.org/huffman-coding-greedy-algo-3/
https://people.ok.ubc.ca/ylucet/DS/Huffman.html
https://www.techiedelight.com/run-length-encoding-rle-data-compression-algorithm/
http://www.cambridgeinternational.org/support

Scheme of Work

 12

Unit 2 Communication

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

2.1 Networks including
the internet
(introduction to types
of network)
(KC3)

Explain the purpose
and benefits of
networking devices.

Describe the
characteristics of a
LAN and a WAN.
Explain whether a
given network is a
LAN or a WAN.

Describe the use,
benefits and
drawbacks of cloud
computing.

Describe the
characteristics of a
client-server and
peer-to-peer
network.

Explain the benefits
and drawbacks of a
client-server and
peer-to-peer
network.

Justify the use of a
client-server or peer-
to-peer network in a
given scenario.

Ask learners to identify all the different tasks they perform using a network each day, e.g. a school network,
home network, mobile phone, any access to the internet, etc. Discuss the answers and collate these into
examples of the purpose and benefits of networking devices.

Extension: Ask learners to identify the purpose and benefits of different devices; e.g. is there a different
purpose/benefit or connecting a printer to a network than a mobile phone? (I)

Introduce LAN and WAN concepts and the characteristics of the different sizes, and the ownership of the
hardware. Show learners a list of scenarios and ask them to vote for whether each one is a LAN or a WAN.
Select some learners to explain their choices (there may not be a right and wrong answer, because there may be
insufficient information). (F)

Split learners into groups and give some groups client-server, and some peer-to-peer models. Ask the groups to
find out a) a definition of the model they have been given, b) the benefits of this model, c) the drawbacks of this
model, d) three different examples of where this model is used. (I) Collate the answers from all the groups, for
example from one group take the definition, then ask the second if there is anything to add/change/refine, etc.
Repeat until there is a comprehensive guide to client-server and peer-to-peer.

Ask learners what is meant by cloud computing, and how they use it. Explain the difference between private and
public clouds and the benefits/drawbacks of each. Common misconception may be that it is only storage, but
there is also cloud software. Where possible allow learners to use cloud software and storage. Ask learners to
create a list of benefits and drawbacks of using cloud computing (I); ask learners to share their answers with
each other and to collect additional answers from other learners.

Give learners an example scenario and ask them to justify whether cloud computing is appropriate in this
situation. (F)

Set learners up with threads/rope as different typologies: the learners are the nodes/server and the thread is the
wired network connection. Rings or other objects can be used as the messages that need to be sent from one
computer to another and transmitted along the threads.

Scheme of Work

 13

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

Describe the
characteristics,
benefits and
drawbacks, of
different network
topologies.

After each topology ask learners to consider what the benefits and drawbacks of that model will be. (I) Give
learners scenarios and ask them to identify which topology would be most appropriate and to justify their choice.
(F)

Students should keep a glossary of networking terms as this topic is terminology-heavy and this should be
updated each lesson.

2.1 Networks including
the internet (hardware)
(KC3)

Explain the
differences between
wired and wireless
networks.

Explain the benefits
and drawbacks of
both wired and
wireless connections.

Describe the purpose
of hardware
components that can
support a LAN.
Identify appropriate
components to
create a LAN.

Describe the role and
function of a router in
a network.

Give learners a set of statements about the different wired and wireless communication methods, e.g. copped
cable. Ask learners to work in pairs/small groups to identify which statements belong with which communication
method. (I) Review each statement with learners. (F)

Show learners an example network with labelled devices. Ask learners to work out what the purpose of the
devices might be based on the diagram. Discuss the answers and tell learners the answers.

Ask a network technician from the school (or another company) to come in and talk about the network devices in
the school/company. Ask them to show the actual devices and how they are connected, etc.

Extension: Allow learners to use the hardware components to connect devices and create a small LAN. (I)

Give learners a scenario and ask them to design a network, identifying the different components that they would
use. (F) Ask learners to justify their choices.

Choose one learner to act as a router. Ask the other learners to act as nodes attached to the router, each with
their own address. Connect the nodes using threads. Ask the router learner to perform the actions, e.g. take the
packets of data from the node and forward them to the correct address (learner).

Extension: Provide learners with a router and set of nodes; show learners how to set up the router to create a
network. (I)

Students should maintain a glossary of hardware components, giving their purpose/use.

2.1 Networks including
the internet (Data
transmission)
(KC3)

Define collisions in
data transmission
and explain how
Ethernet detects and
avoids collisions.

Set learners up with a single line communication media, e.g. using a thread, with different learners connected to
either end. Ask learners to send ‘data’ at the same time – ask them what happens, i.e. a collision. Explain how
this means the data is lost. Explain how CSMA/CD detects this collision and how it manages it. Ask learners to
repeat the exercise, this time using random time intervals to repeat the transmission.

Scheme of Work

 14

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

Explain the
difference between
the internet and the
WWW.

Describe the
hardware required to
communicate over
the internet.

Explain the use of IP
addresses in the
transmission of data
over the internet.

Explain the benefits
of a URL over an IP.
Explain the role of a
DNS in converting a
URL to IP.

Ask learners what they do on the internet, and what they do on the world wide web. Challenge learners about
what the differences actually are – it is likely they will not know. Ask learners to come up with a list of
activities/actions they can do on the internet that does not involve the WWW. Explain how websites are stored on
servers, and each time a webpage is requested, data is sent to the server that stores the website, the server
executes the request and returns the required data.

Ask learners to refer back to the lesson(s) on network hardware. Discuss the hardware and which are actually
required, or optional, to access the internet (it should be that the majority are not required). Ask learners how
they connect to the internet (e.g. home, school, on mobile phones) and explain the different modes. When
discussing modems, refer back to sound (1.2 Multimedia: Sound) and that the modem performs the analogue to
digital conversion (and vice versa).

Ask learners to write down any IP addresses that they know, and any URLs that they know. Discuss the
differences and how they are both actually addresses to websites, but one (URL) is more people-friendly. Use a
telephone book (or other indexed book) to show learners how a DNS will find the IP for a URL, and use more
than one book for when the answer is not in the first one. Extension: Ask learners to create a flowchart to show
the process of converting a URL to IP. (F)

Show learners the format for IPv4. Ask learners how many different addresses can be represented using IPv4
(assuming there are no reserved addresses). Ask them how many devices they think are ever connected to the
internet at the same time. Explain the difference between public and private IPs, and static and dynamic IPs and
discuss how this impacts the number of devices that can access the internet. Link to the need for more
addresses so that more devices can be on the internet at the same time – introduce IPv6 and how this format
allows for more addresses.

Extension: If access permits, show learners how to ping URLs and ask them to explore what the data returned
means. (I)

Return to network diagrams that were drawn with topologies and hardware devices. Introduce subnetting and ask
learners to add possible IPs onto the diagram for the router (or equivalent) and nodes. (F)

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)
9618/1 Specimen paper Q2

http://www.cambridgeinternational.org/support

Scheme of Work

 15

Unit 3 Hardware

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

3.1 Computers and
their components
(primary and
secondary storage)
(KC4)

Explain the
difference between
primary and
secondary storage.

Identify items that
are stored in
secondary storage.

Explain the
difference(s)
between RAM and
ROM.

Explain the
difference(s)
between SRAM and
DRAM.

Explain the
difference(s)
between PROM,
EPROM and
EEPROM.

Give learners access to an old computer and allow them to work in small groups to take it apart and try and
identify the different components. This can be in done in reverse: give learners the components and challenge
them to work out how to put it back together and get the computer working. (I)

Discuss the difference between primary and secondary memory. Challenge the common misconception that
secondary is only for backing up, not for storage of files. Secondary storage can be used to backup files, i.e.
using removable storage, but it is not the main and/or only use.

Give learners a list of files, documents, commands, elements of software, etc., that can be stored and ask
learners to identify if they would be stored in primary and/or secondary (depending on how they are currently
being used). (F)

Ask learners to write down all the data that they store in secondary storage, and which device(s) this data is
stored on, e.g. a PC, tablet, mobile phone etc. (I) Collate the learners’ responses to give a clear indication of
what is stored in secondary memory. (F)

Explain the difference between RAM and ROM. Refer back to the list of data and ask them to identify if any of
these would be stored in RAM/RAM. (F) Explain their purpose in a standard PC/laptop and then expand to a
range of devices (e.g. laptops, mobile phones, televisions, games consoles, remote controlled car, etc.) and
explain the differences in the purpose of RAM and ROM in each of these. Give learners a list of devices to
investigate and identify what would be stored in RAM and ROM in each device. (F)

Expand RAM into Static (SRAM) and Dynamic (DRAM). Ask learners to investigate the benefits and drawbacks
of SRAM and DRAM, and why some of these are dependent on the actual tasks being performed. (I) Collate the
answers from learners. (F)

Expand ROM into PROM, EPROM and EEPROM, especially how these contradict the traditional definition of
ROM that it cannot be changed.

Ask learners to research examples of devices that make use of PROM, EPROM and/or EEPROM, what they are
used for in these situations and why. (I) Collate the responses and share the answers for each type of ROM. (F)

Students should maintain a glossary of hardware component terminology, adding new terms each lesson.

Scheme of Work

 16

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

3.1 Computers and
their components
(operation of hardware
devices)
(KC4)

Describe the
principal operations
of a range of
hardware devices.

Explain the purpose
and use of buffers in
a range of devices.

Give learners access to each of the hardware devices and allow them to take them apart and identify the
components (I). An alternative is one device can be shown to learners and they can observe it being taken apart.

Explain to learners what a buffer is. Set up one learner as a sender, and one as a receiver. Provide the sender
with a large number of messages written on small pieces of paper that have been screwed up into balls. The
sender should send them (throw them) as fast as they can to the receiver, one at a time, and the receiver has to
catch each one, read it out loud and then put it in a box before they can catch the next. They should find that the
receiver cannot keep up and the messages end up on the floor. Introduce a ‘buffer’ – this could be another
learner, or a box. Repeat, this time the sender sends the ‘data’ to the buffer, and the receiver collects from the
buffer. The messages should not be lost. Ask learners to relate this use of a buffer to different scenarios e.g.
printer buffers, transfer of data in a network.

Put learners into groups and give each group a different device to investigate. Each group should produce a
single-sided A4 sheet that shows: a) the components of a device, e.g. a cut-through model; b) annotations of
components and their purpose; c) a flowchart that shows how the device works; and d) whether it might include a
buffer and if so what its purpose is. (I) Groups should present their findings to the other groups, along with a copy
of the info sheet. Link devices to previous topics, e.g. magnetic hard disk to secondary storage, microphone to
multimedia (sound).

3.1 Computers and
their components
(monitoring and
control systems)
(KC4)

Describe the use of
sensors.

Identify appropriate
sensors for a
scenario.

Explain the
difference between a
monitoring and
control system.

Describe the use and
function of a
monitoring and
control system in a
given situation.

Ask learners to identify all the different ‘things’ that they could measure, for example temperature. Collate the list
and categorise them into the appropriate sensors – some learners may think there is a weight sensor when it is
actually a pressure sensor.

Take learners to view control and monitoring systems in practice, and/or to meet people who can explain what
their monitoring and control systems to do.

Ask learners to create a list of any monitoring and/or controls systems that they see and/or interact with during a
week. Collate a list of these systems and ask learners to consider how they work.

Extension: Provide learners with sensors that they can use to collect data, and set up both monitoring and
control systems, e.g. through the use of Raspberry Pi https://www.raspberrypi.org/.

https://www.raspberrypi.org/

Scheme of Work

 17

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

3.2 Logic Gates and
Logic Circuits
(KC4)

Use the NOT, AND,
OR, NAND, NOR
and XOR logic gate
symbols

Understand and
define the functions
of :
NOT, AND, OR,
NAND, NOR and
XOR (EOR) gates

Construct the truth
table for each of the
logic gates

Construct a logic
circuit

Construct a truth
table

Construct a logic
expression

Provide learners with a list of statements that use AND, OR and NOT that require them to perform a function
(most likely best integrated within IF statements, e.g. ‘IF you are aged 17 AND wearing black socks then stand
up’).
Ask learners what the meaning of the AND, OR and NOT are in relation to each example, and which cases result
in the action being performed (and not performed).

Introduce the new operators NAND, NOR and XOR and give learners a series of these used in sentences.

Give learners the truth tables for the six gates and show them how to complete a truth table for a statement. Give
learners a series of logic circuits and ask them to complete the truth tables. (F)

Show learners the gate symbols, and explain how they are combined to create logic circuits. This can be
introduced using software, e.g. https://logic.ly/

Extension: Ask learners to work out what some of the other features/gates in the software do and how to use
them. (I)

Give learners a series of logic circuits and ask them to identify the circuits. Repeat, giving learners logic
statements and ask them to create logic circuits. Some learners may benefit from working in pairs to begin with,
and then working individually. (F)

Extension: Ask learners to come up with the most difficult logic circuit they can draw, then they need to come up
with the logic statement for the circuit. (I)

Show learners some example problems and explain how to convert this into a logic expression. Give learners a
series of problems and ask them to work in pairs to develop the logic statements, then develop the logic circuits
and matching truth tables.

Extension: Ask learners to come up with their own problem statements for other learners to develop logic
statements and logic circuits from. (I)

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)
9618/1 Specimen paper Q4, 5

https://logic.ly/
http://www.cambridgeinternational.org/support

Scheme of Work

 18

Unit 4 Processor Fundamentals

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

4.1 Central Processing
Unit (CPU)
Architecture
(KC4)

Describe the Von
Neumann model for
a computer system.

Describe the purpose
and role of each
register in the Von
Neumann model.

Describe the purpose
of and role of the
components within
the processor.

Explain how the
different ports allow
connection to
peripherals.

Describe the stages
of the Fetch-Execute
cycle.

Explain the purpose
of interrupts.
Describe how
interrupts are
handled in the F-E
cycle.

Show learners a simulation of the Von Neumann model, e.g. the little man computer
https://peterhigginson.co.uk/lmc/

Give learners a series of instructions to enter in, and ask learners to work in groups to work out the purpose of
each component, e.g. register based on what happens when the instructions are run. (I)

Extension: Ask learners to change the instructions/operands and to predict what will happen to the program.
Then run the program and see if they were correct.

Give learners the key terms and definitions (or a variety of statements detailing the function and purpose of each
component) and ask them to match them. (F)

Show learners how the F-E cycle runs. Set learners up as the different registers and components in the computer
and get them to physically run the F-E cycle, and instructions, by passing data and instructions between each
other. (I)

Give learners the F-E cycle in register transfer notation with errors in and ask learners to find and correct the
errors. (F)

Give learners a series of different computer specifications and ask them which will run fastest, etc., and which
components affect the performance. (F)

Give learners a range of devices to connect to a computer using different ports to recognise the types of port and
what they are used for. Ask learners to find out the benefits of each type of port and what it supports.

Give learners scenarios and devices to be connected: learners should identify and justify a port to use for
connection. A common misconception here is that USB is the device, e.g. a USB pen drive: learners should be
made aware that USB is the connection and not the device. (I)

Give learners a list of possible events that could cause an interrupt and ask them to categorise them, for
example, into input/output, software, hardware, etc. (F)

https://peterhigginson.co.uk/lmc/

Scheme of Work

 19

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

Ask learners to act out roles in the F-E cycle with one learner acting as the interrupt handler. When each F-E
cycle ends, the learner acting as the interrupt register should be checked and the handler instigated if needed.

Extension: Students can create a simulation of the F-E cycle, through animation software, or by writing a
program that requires the instructions to be input. The simulation should show the contents of the registers at
each stage and where data/instructions move to/from.

Students should maintain a glossary of key terms for the components.

4.2 Assembly
Language
(KC4)
(KC2)
(KC1)

Explain the
relationship between
assembly language
and machine code.

Describe the stages
of the assembly
process for a two-
pass assembler.

Categorise assembly
language
instructions.

Explain the different
modes of
addressing.

Follow assembly
language instructions
to dry run a program.

Show learners an example of a high-level language program, the equivalent in assembly language and then in
machine code. Discuss how all the programs are the same and how the assembly language is made up of
opcodes and operands.

Walk through the stages of the two-pass assembler, or develop an animation showing each step. Give learners
some simple programs and ask them to perform the same process. Compare learners’ results for the processes
and ask them to identify the differences and what any errors were. (F)

Give learners assembly language programs and ask them to write out what each instruction does using the
assembly language table but with application to the operand in the code. (I)

Use an assembly language simulator to run assembly language programs, e.g. https://peterhigginson.co.uk/lmc/
(I)

Give learners assembly language programs and trace tables to complete – ask learners to work in pairs to begin
with, one following the code and the other updating the table to keep track of where they are. (F)(I)

Extension: Give learners assembly language programs that have an error and ask them to trace the programs to
find out what the problem is and what the solution should be. (I)

Use boxes with instructions like a treasure map to represent modes of addressing. For example, the box might
have the address of another box to open. Give learners an instruction and ask them to execute the instructions
by opening the box(es) where appropriate and performing the actions.

Give learners a list of assembly language instructions and ask them to group them into the five given groups
(immediate, direct, indirect, indexed, relative). (F)

https://peterhigginson.co.uk/lmc/

Scheme of Work

 20

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

4.3 Bit manipulation
(KC4)
(KC2)
(KC5)

Perform shifts on a
binary number.

Explain the impact of
a shift on a binary
number.

Use bit manipulation
to check values in
registers.

Show learners how to perform a shift, then ask them to work out the effect a single shift has on the number.
Repeat with a 2-place shift, and left and right, etc., so learners are working out the purpose for themselves. (I)

Ask learners what the problem(s) with shifts are, e.g. bits are lost, and explain how these could be mitigated.

Show learners the effect of bit manipulation operations. Give learners examples of where and why these would
be used for example relating to scenarios to check the values of bits, and to change the values of bits.

Relate back to monitoring and control, recap fundamentals of sensors and characteristics of these systems.
Show learners how registers can be used to check the data received and perform actions depending on their
content.

Give learners a scenario and ask them to work in pairs to follow and examine assembly language programs to
perform monitoring and control tasks. (I)

Extension: Students can create assembly language programs to test bits and perform monitoring and control
activities.

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

http://www.cambridgeinternational.org/support

Scheme of Work

 21

Unit 5 System Software

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

5.1 Operating System
(KC4)

Explain why a
computer system
requires an
Operating System.

Explain the key
management tasks
carried out by the
Operating System.

Explain the need for
utility software.

Describe the purpose
and function of
typical utility
software.

Explain the purpose
of program libraries
and the benefits of
using a library
(including DLL).

Ask learners to list what the Operating System they use allows them to do. Ask them to consider a computer
without an operating system – how would they perform tasks?

Introduce each management task of an Operating System. Relate to different types of computers and how it
might be the same, or how the task may differ, e.g. tablets, mobile phones, embedded systems, etc.

Give learners a list of actions that may be performed and ask learners to categorise them into the management
activity they relate to. (I)

Ask learners to write down all the useful software that comes with their operating system i.e. the utility software.
(I)

Give learners access to a program library for the program language used. Show learners how to import the
library and use the procedures within it. Where possible, let learners use both static and dynamic libraries to
experience the differences. (I)

Give learners an example scenario, e.g. a person who could choose to use a library or not, and ask them to
argue for a library and against. This could extend to dynamic or static libraries. (F) (I)

5.2 Language
Translators
(KC4)
(KC2)

Identify the purpose
of an assembler,
compiler and
interpreter.

Explain the benefits
of using a compiler
and/or interpreter in
a given situation.

Give learners some instructions that are encoded (e.g. using a cipher), and ask them, in pairs, to act as a
compiler and an interpreter. The compiler should translate all the lines and then do what they say; the interpreter
should translate one line and then run it.

Ask learners to debate compiler vs interpreter for a given scenario, e.g. a person who is writing a program.
Students should argue why each should be used – there may not be an actual definite answer, but it is the
reasons behind the arguments that are important. (F) (I)

Scheme of Work

 22

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

Describe the features
found in an IDE.

Ask learners to open the compiler/interpreter IDE they use for the programming language used, and to write
down all of the tools and features it includes. Give them access to a different compiler/interpreter and ask them to
go through the list and identify which it also has, and if there are any different/extra features. (I)

Give learners the categories coding, initial error detection, presentation and debugging – ask learners to put the
features/tools into each of categories. Collate these from the learners and add any extra they are missing. (F)

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

http://www.cambridgeinternational.org/support

Scheme of Work

 23

Unit 6 Security, Privacy and Data Integrity

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

6.1 Data Security
(KC3)
(KC1)
(KC5)

Explain the
difference between
security, integrity and
privacy of data.

Describe the threats
to data and computer
systems.

Explain how threats
can be prevented or
restricted.

Describe methods to
secure data.

Collect recent news articles about companies that have encountered major issues, e.g. through a lack of security,
privacy of data. Ask learners to discuss what they did wrong and what they should have done, or what they
should do next.

Ask learners to list the different ways they can keep their data, and computer secure.

Give each learner (or pair of learners) a security measure to research. Ask them to create a presentation about
what the measure is, how it works, etc., in technical detail. Learners can present their findings to each other. (F)
(I)

Put learners into groups and give each learner a different scenario. Ask them to create a report identifying the
potential threats to the data and computer systems in the scenario, and what they should do to prevent/limit
these threats. (F) (I)

Extension: Students can program an encryption algorithm that both encrypts a message and decrypts using a
common encryption method. (I)

6.2 Data integrity
(KC3)
(KC1)
(KC5)

Describe different
validation routines.

Explain how
verification can be
used to make sure
data is the same as
the original.

Explain how data can
be verified during
data entry and
transfer.

Ask learners to complete some online forms that include verification and/or validation. Ask them what restrictions
there were. Link these to whether they are examples of verification or validation.

Give learners a series of validation descriptions and ask them to categorise them into one of the methods, for
example some may be examples of code. (F)

Ask learners for examples of when they have had to verify data, e.g. new passwords, confirming amounts, etc.,
and create a list of all the different places this has been encountered.

Extension: Give learners a program that requires a range of inputs and ask them to program validation and
verification routines. (I)

Discuss what problems could occur during data transfer. Show learners how to add a parity bit. Get learners to
‘send’ data to each other using parity. Ask them how they could find the error that occurred.

Scheme of Work

 24

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

With a parity byte you cannot find it – so introduce parity blocks and how an error can be located and therefore
corrected. Ask learners what happens when 2, 3, 4, etc., errors occur instead of just 1 bit, and how parity may not
identify that an error has occurred, and the location can no longer be found.

Introduce checksums and ask learners to perform checksums on data.

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)
9618/1 Specimen paper Q4

http://www.cambridgeinternational.org/support

Scheme of Work

 25

Unit 7 Ethics and Ownership

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

7.1 Ethics and
Ownership
(ethics and copyright)
(KC3)
(KC1)

Explain the need for
ethics and to act
ethically.

Discuss the impact of
acting ethically and
unethically.

Identify ways a
person can act
ethically and/or
unethically in a given
situation.

Describe the key
features of a range of
software licences.

Give learners a range of scenarios and ask them to identify the ethical decisions that could be made.
Organise debates as to whether an action, or scenario, is ethical or unethical with learners fighting for both sides.
Give learners the IEEE ethics and a scenario, ask them to identify one way that a specific person could act in the
ethical interest of each of the IEEE categories.

Ask learners to discuss potential consequences on not acting ethically, or unethically. (F) (I)

Give learners some example software with the copyright licences included. Ask them to summarise what the
licence does, and does not, allow them to do.

Give learners a scenario and ask them to recommend a licence, with justification. Ask some learners to fight for
one licence and other learners a different one. Explain that there is not necessarily a right answer, it is about the
justification. (F)

Give learners features of different licences and ask them to categorise them to the appropriate type of licence.
(F) (I)

Students should maintain a glossary of the different licences.

7.1 Ethics and
Ownership
(Artificial Intelligence)
(KC3)
(KC1)

Identify the need for
Artificial Intelligence
(AI).

Discuss the benefits
and drawbacks of AI.

Show learners a clip from a film or television programme where AI is evident. Discuss how far from reality this is,
and what future developments are needed before this could become a reality.

Give learners an example of where AI is being developed (or could be) and ask learners to identify the potential
positive and negative impacts this could have. (F)

Put learners into two teams, one for AI and one against. Hold a debate for and against the development of AI. (F)
(I)

Extension: Students can explore how computer programs can ‘learn’ and adapt to new situations, for example
by looking at ant algorithms.

Scheme of Work

 26

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)
9618/1 Specimen paper Q4e

http://www.cambridgeinternational.org/support

Scheme of Work

 27

Unit 8 Databases

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

8.1 Database
Concepts
(KC5)
(KC1)

Explain the
limitations of a file-
based approach.

Describe the features
of a relational
database that
addresses the
limitations of a file-
based approach.

Create entity-
relationship (E-R)
diagrams to
document a
database design.

Describe the
normalisation
process of a
database.

Create a normalised
database design for
a given database
description.

Give learners a file-based database and ask them to perform some actions, e.g. change data, retrieve data. Ask
them what the problems were, e.g. they had to change the same data multiple times, data had to be accessed
across several files.

List the drawbacks of a file-based approach and explain how a relational database will solve this problem.

Give learners a relational database that has already been set up and populated, ask them to perform tasks as
with the file-based approach and compare the two systems. (I)

Give learners an example database and ask them to apply the terms, e.g. identify the entity, a table, record, etc.

Give learners database terms with definitions and ask them to match the definitions to the terms.

Ask learners to describe the relationships between a series of tables, both from descriptions and then from E-R
diagrams.

Set up a spreadsheet with the fields for a database in 0NF with some sample data. Ask learners to work together
to normalise the database – using the spreadsheet to manipulate the field names into the new tables.

Give learners an example database and ask them to identify which NF it is in and to justify their choice. (F)

Provide learners with a database scenario and ask them to identify the fields required, and then to design a
normalised database. (F) (I)

Students can provide a guide to normalisation, using an example database, to explain each step of the
normalisation process. (F)

Students should maintain a glossary of key database terms.

Scheme of Work

 28

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

8.2 Database
Management System
(DBMS)
(KC5)
(KC1)

Explain how a DBMS
addresses the
limitations of a file-
based approach.

Describe the features
and software tools of
a DBMS.

Give learners experience of one or more DBMSs. Ask them to identify the features/tools within it. Collate a list of
these features. Show learners a database that does not have a DBMS; for example, one that uses SQL only, and
ask learners to compare them giving the benefits and drawbacks of each. (F) (I)

Show learners how to set up a database using the DBMS and a range of features. Give them a scenario and ask
them to set up a database making use of the different features. Ask learners to describe the features they used
and how they address the limitations of a file-based approach.

Give learners a scenario where a range of people with different requirements access a database. Ask learners to
identify the data that each person or group of people needs to access, and relate this to the different security and
system views that they should have access to.

Students should maintain a glossary of key database terms.

8.3 Data Definition
Language (DDL) and
Data Manipulation
Language (DML)
(KC5)
(KC2)
(KC1)

Follow DDL and DML
commands written in
SQL.

Write SQL scripts to
perform DDL and
DML tasks.

Introduce each SQL statement one at a time and give learners a range of exercises using that statement. (F)

Ask learners to recreate a database they have already made using SQL only. (F) (I)

Give learners a series of SQL scripts with errors in them. Ask learners to correct the statements and run them on
a database.

Give learners a new database scenario. Ask them to create a normalise model for the database and then set it
up using SQL scripts. (F) (I)

Ask learners to give each other challenges, e.g. come up with a query that they want results for, and the other
learner must complete the challenge. (I)

Give learners ‘fill the gaps’ SQL statements and scripts that are incomplete; learners should fill in the missing
statements.

Give learners SQL scripts that are out of order and ask them to put them in the correct order.

Students should produce an SQL glossary of command terms and their meanings.

Scheme of Work

 29

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)
9618/1 Specimen paper Q3

http://www.cambridgeinternational.org/support

Scheme of Work

 30

Unit 9 Algorithm Design and Problem Solving

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

9.1 Computational
Thinking Skills
(KC1)

Explain the purpose
of and need for
abstraction.

Create an abstract
model of a system.

Explain the purpose
of and need for
decomposition.

Decompose a
problem into its sub-
problems.

Show learners a series of computer programs, e.g. different games, and ask them to explain the difference
between the real world and the representations within the game, e.g. the detail, elements that are missing, what
has been included. Discuss why some elements have been removed, and how the real world features have been
represented in the computer system.

Ask learners what problems they could foresee happening if they tried to create an exact replica of the real world in
a computer game – e.g. time constraints, memory limitations, processor requirements.

Give learners a problem, e.g. a computer game, and ask them to create an abstract model by identifying what
details they would keep and remove, and how they would represent parts of the system. (I)

Give learners the description of a computer game they need to create. Ask them to consider where to start and
what they will do first. Discuss the issues with a large problem and what can be done to make this simpler. Show
learners how to decompose a problem and use a structure diagram to represent the component parts. Ask learners
to decompose the same problem and then identify where to start. Discuss how this decomposed problem could
now be split among different people, and each component can be a program module and interpedently created. (F)
(I)

9.2 Algorithms
(KC1)
(KC2)

Select appropriate
identifier names.

Write programs in
pseudocode using
input, process and
output.

Write pseudocode
using assignment,
sequence, selection
and repetition
(including logic
statements).

Give learners a program with multiple variables in that are all very similar in name that are also meaningless, e.g.
zz1 zzz1 zzz1. Ask learners what problems could happen with these identifiers. Discuss what makes a good
identifier. Give learners a program and ask them to create an identifier table.

Give learners algorithms in pseudocode to follow. These could start with instructions of actions for them to take,
such as moving around the room, and then progress to variables and processes on these.

Give learners pseudocode algorithms with errors and ask learners to trace the algorithms and correct them. (I)

Give learners pseudocode algorithms and ask them to identify where there are examples of assignment, sequence,
selection and repetition.

Introduce selection using a series of statements for learners to read and follow e.g. if the time is 11:00 and you are
17 years old then clap your hands, etc. These can be extended to multiple criteria and actions for learners to work

Scheme of Work

 31

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

Write pseudocode
from a structured
English description
and from flowchart.

Explain how stepwise
refinement can be
used to express an
algorithm to a level of
detail from which the
task may be
programming.

out what to do. Boxes can be given identifiers with data written on paper inside, then learners can follow selection
statements by opening the box and checking the value within it.

Give learners short programs to write pseudocode solutions to, these can increase in complexity each time.
Students can design the programs in pseudocode and then write the program in their chosen programming
language.

Give learners a program in pseudocode and program code and ask them to identify the differences, i.e. language
specific terms are not used, but that there is no set pseudocode.

Give learners flowcharts to follow that make them perform actions. Ask learners to then convert these flowcharts
into pseudocode. (I) (F)

Ask learners to design the solution to a program in pseudocode, then to give this pseudocode for someone else to
follow and create a program from. (F) (I)

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)
9618/2 Specimen paper Q5, 6, 7

http://www.cambridgeinternational.org/support

Scheme of Work

 32

Unit 10 Data Types and Structures

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

10.1 Data Types and
Records
(KC1)
(KC2)
(KC5)

Select and use
appropriate data
types for a problem
solution.

Use a record
structure to hold a
set of different data
types under one
identifier.

Give learners example data and ask them to identify the most appropriate data type to use.

Give learners programs where inappropriate data types were chosen and ask them to identify why they are
inappropriate and to suggest one that is more appropriate. (F)

Present learners with a pre-created record structure and ask them to create new records, store data in them and
access the data. (I)

Give learners a scenario and ask them to design a record structure to store the data in. Ask learners to create the
structure, store examples of data in it and extract the data from it. (I)

Students should maintain a pseudocode glossary of the key terms they can use to define the different structures.

10.2 Arrays
(KC1)
(KC2)
(KC5)

Use the technical
terms associated
with arrays.

Select a suitable
data structure (1D or
2D array) to use for a
given task.

Write pseudocode for
1D and 2D arrays.

Write pseudocode to
process array data.

Give learners a grid on paper with indexes above each space. Explain how to put data in an index, get data from
an index, etc., then learners can perform each instruction on the grid, writing in the values, etc. This can be
repeated with a 2D grid. (F)

Provide learners with small pieces of paper with numbers on to shuffle and place in the 1D/2D array grid facing
down. Learners can use the cards to perform a bubble sort and linear search, turning the cards over on each
stage. (I)

Give learners a pseudocode algorithm for a bubble sort and linear search and ask them to trace the algorithm.
Repeat with algorithms that include errors and ask learners to trace the algorithms to find, and correct, the errors.

Give learners incomplete pseudocode algorithms for bubble sort and linear search and ask them to complete the
algorithms. (F) (I)

Discuss efficiency in a linear search and bubble sort. Present learners with inefficient algorithms and ask them to
work out how to increase the efficiency. (I)

Extension: Ask learners to investigate other searching and sorting algorithms that are more efficient than linear
and bubble. Ask them to work out how they work and why they are more efficient. (I)

Scheme of Work

 33

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

10.3 Files
(KC1)
(KC2)
(KC5)

Explain why files are
needed.

Write pseudocode to
handle text files that
consist of one or
more lines.

Discuss the need for files and what would happen to data if it was not stored in a file.

Give learners pseudocode for using a file with error(s) in them and ask learners to find the error(s). (I)

Present learners with a scenario that needs file storage and ask learners to write pseudocode for the program.
(F) (I)

Give learners pseudocode for a program that accesses a file that includes errors, ask learners to trace, find and
correct the errors. (F) (I)

Extension: Ask learners to research different methods of file organisation and access, and to find out how the
pseudocode would have to change to take this into account. (I)

Extension: Ask learners to work out how to write program code in a specific language to access files and to
convert the pseudocode to program code. (I)

10.4 Introduction to
Abstract Data Types
(ADT)
(KC1)
(KC2)
(KC5)

Explain that an ADT
is a collection of data
and a set of
operations on those
data.

Explain how a stack,
queue and linked list
are examples of
ADTs.

Use a stack, queue
and linked list to
store data.

Describe how a
queue, stack and
linked list can be
implemented using
arrays.

Act out stacks and queues with learners: learners form a line – the stack/queue – and then other learners are
added and/or removed according to the instructions being run.

Give learners a grid on paper to act as the stack/queue and data items on individual pieces of paper. Learners
add data to the queue by putting the pieces of paper onto the grid, and remove data from the stack/queue by
them from the grid. (I) (F)

Act out linked lists with learners. Each learner will need a number, and a number that they point to. The learners
can then be added to the linked list and each learner changes their pointer to point to the next learner in the list.
Reinforce the use of null pointers with the final element pointing to null.

Give learners a 2D table on paper to act as a 2D array, with column headings, e.g. index, data, pointer. Learners
are to follow a set of instructions to populate the linked list by filling in the table. This can be extended by
removing items and learners having to update the table each time. (F) (I)

Extension: Students could begin to develop algorithms for adding, removing and editing the data in the three
structures. These could be in the form of structured English instructions, flowcharts and/or pseudocode. (I)

Scheme of Work

 34

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)
9618/2 Specimen paper Q1, 3, 5, 7

http://www.cambridgeinternational.org/support

Scheme of Work

 35

Unit 11 Programming

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

11.1 Programming
Basics
(KC1)
(KC2)
(KC5)

Write pseudocode
from a given design
presented as either a
program flowchart or
structured English.

Write pseudocode
statements for:
• the declaration of

variables and
constants

• the assignment of
values to variables
and constants

• expressions
involving any of the
arithmetic or logical
operators input
from the keyboard
and output to the
console

Introduce variables and constants using boxes that have the data within them (e.g. on paper). Give learners a
series of pseudocode statements that they run by getting the data from the boxes and/or changing the data in the
boxes and/or reading out the data from within the boxes.

Provide learners with pseudocode that uses arithmetic and logical operators, variables and constants that
includes errors; learners should trace the algorithms and identify the errors. (F) (I)

Give learners access to built-in functions and library routines in the chosen programming language. Discuss what
the libraries allow them to do that they could not before. Show them what happens if they try and use the routines
without importing them.

Give learners a list of the different arithmetic and logical operators and ask them to identify their meaning.

Give learners pseudocode algorithms with missing operators and ask them to complete the operators. (F)

Learners should have a glossary of key programming terms and the arithmetic and logical operators should be
added.

You should refer to the Pseudocode Guide on the School Support Hub www.cambridgeinternational.org/support
while teaching this topic.

11.2 Constructs
(KC1)
(KC2)
(KC5)

Use pseudocode to
write:
• an IF structure

including ELSE
and nested IF
statements

• a CASE
statement

• a count-
controlled loop

Present learners with a range of IF statements to execute practically, by performing actions, calculations, etc. (F)
(I)

Give learners a program with an IF statement in and ask them to turn it into a CASE statement. Repeat with
examples that cannot be converted and ask learners to explain why it cannot be represented in the alternative. (I)
(F)

Provide learners with a CASE statement and ask them to turn it into an IF statement. (I) (F)

Give learners example selection statements with errors in and ask them to debug the code and correct the errors.
(F) (I)

http://www.cambridgeinternational.org/support

Scheme of Work

 36

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

• a post-condition
loop

• a pre-condition
loop

Justify why one loop
structure may be
better suited to solve
a problem than the
others.

Present learners with a range of iteration statements to execute practically, e.g. to continually do something until
a condition is met. This can be repeated with calculations, etc., that are performed practically, taking one line of
code at a time.

Give learners a program using one type of loop and ask them to convert it into another type, e.g. a pre-condition
to a post-condition. Ask learners to identify what types of loop cannot be converted into other types, e.g. not all
post/pre-condition loops can be turned into count-controlled loops.

Provide learners with pseudocode algorithms with loops in that are incorrect, e.g. they loop 11 times instead of
10 times. Ask learners to dry run the algorithms and correct the errors. (F) (I)

Give learners pseudocode algorithms with loops in and ask them to write them in your chosen programming
language. (F) (I)

Describe programs that require loops, and ask learners to identify and justify the most appropriate loop to use.
(F) (I)

Learners should create a glossary of key programming terms and ask selection and iteration operators.

11.3 Structured
Programming
(KC1)
(KC2)
(KC5)

Define and use a
procedure and a
function.

Explain where in the
constructor of an
algorithm it would be
appropriate to use a
procedure or a
function.

Use parameters in a
procedure and a
function.

Give learners some programs (in pseudocode or a programming language) that include procedures and
procedure calls. Ask learners to work in pairs to trace the algorithms, following each instruction to work out what
the procedures do and what they are. Ask learners to explain their findings. (F) (I)

Show learners an algorithm with a section of code that is repeated multiple times, e.g. outputting the contents of
an array. Ask learners what the drawbacks of repeated code are and explain how procedures can reduce this
repeated code. (F)

Show learners some built-in functions that they will already have made use of in their language e.g. finding the
length of a string. Discuss what is different between a procedure and what the function does.
Give learners a description of functions to implement and then make use of in their program. (I)

Use boxes to act as variables and parameters. Show learners what happens to the values in the variables, and
parameters when an algorithm is run that includes procedures taking parameters by value and then by reference.

Scheme of Work

 37

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

Use the terminology
associated with
procedures and
functions.

Write efficient
pseudocode.

Ask learners to explain to each other what by reference and by value means and when these should be used.

Give learners algorithms that include procedures and/or functions that take values by reference and/or by value
that are incorrect and ask them to trace them and make corrections. (F) (I)

Give learners pre-written subroutines to implement and make use of in a program. (I)

Show learners a structure diagram (or make use of one they created earlier) and discuss how this design can be
used to identify the procedures/functions.

Give learners scenarios and ask them whether procedures or functions should be used. Ask learners to justify
their choices.

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)
9618/2 Specimen paper Q1c, 4

http://www.cambridgeinternational.org/support

Scheme of Work

 38

Unit 12 Software Development

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

12.1 Program
Development Life
cycle
(KC1)
(KC2)

Explain the purpose
of a development life
cycle.

Explain the need for
different
development life
cycles depending on
the program being
developed.

Describe the
principles, benefits
and drawbacks of
each type of life
cycle.

Describe the
analysis, design,
coding, testing and
maintenance stages
in the program
development life
cycle.

Present learners with two scenarios, one where a development team are following a plan/schedule based on a
development life cycle, and another where they are all working on the program without any plans, etc. Ask
learners to discuss the benefits and drawbacks of each approach. (F)

Describe each stage of a development life cycle one at a time, showing learners the items developed in that
stage; give learners a small program and after each stage ask them to follow the same processes for their
project. (I)

Give learners the different life cycle stages and activities on individual cards; ask them to put the stages in order
and to put the activities with their corresponding stage. Repeat for the different life cycles. (F)

Provide learners with a series of benefits and drawbacks for the different development life cycles and ask them to
identify which cycle each belongs to. (F)

Give learners a series of scenarios of projects that need to be written and ask learners to work in groups to
identify which development life cycle should be used and to justify their choice. (I) (F)

Give learners a scenario program to develop as a group (this could be as a whole class, or in smaller groups).
Ask learners to select a life cycle to follow and to justify their decision, and then to follow the life cycle to create
the program as a group – limit the scope of the project to allow them to use all sections of the life cycle. (F) (I)

Extension: Ask learners to research other typical life cycles and identify the common themes between them, and
the differences. (I)

12.2 Program Design
(KC1)
(KC2)
(KC5)

Use a structure chart
to decompose a
problem into sub-
tasks and express
the parameters
passed between the
various
modules/procedures/

Show learners a structure chart and ask them to explain each part of the diagram.

Give learners a structure chart and ask them to create the program that it shows. (F)

Give learners a structure chart without the parameters and ask them to complete the diagram. (F)

Give learners a structure chart and pseudocode for the same program and ask them to identify the differences.
(F)

Scheme of Work

 39

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

functions which are
part of the algorithm
design.

Create and use a
state-transition
diagram to document
an algorithm.

Show learners a device, such as a safe with a programmable number. Ask learners to work in groups to identify
all the different states the device can be in. Ask learners to then identify how the device moves from one state to
another. Show learners how to turn this into a state-transition diagram. (F) (I)

Give learners a state-transition diagram and ask them to convert it into a narrative of the different states and the
movement between those states.

Ask learners to create a state-transition diagram for a scenario/program. (F) (I)

Show learners a computer program, such as a game with characters and objects. Ask learners to identify the
different objects, and then states these objects can be in. Ask them to draw state-transition diagrams for the
objects. (F) (I)

Extension: Ask learners to turn one of their state-transition diagrams into a program. (I)

12.3 Program Testing
and maintenance
(KC1)
(KC2)

Explain how faults in
programs can be
exposed and
avoided.

Locate and identify
the different types of
errors.

Correct identified
errors.

Use different
methods of testing
and select
appropriate data for
each method.

Explain the need for
a test strategy and

Give learners a program that does not work, and ask them to find the error, using whatever methods they want.
Collate the methods used by the different learners into a list of ways to find errors. Split this into ways that they
worked out there was as error, and how they found out where and what the error actually was.

Show learners a series of programs each with one or more types of error in. Ask learners to read the program
and identify the type(s) of error within it, e.g. if there is a syntax error, logic error etc. and then where this is. (I)

Give learners a program with errors in it (or ask them to write a new one) and then perform each type of testing
and document their testing, i.e. dry run, walkthrough, white-box, black-box, and so on. (I)

Show a series of algorithms and test data and ask learners to identify the type of test data each is for. Repeat but
by giving the type of test data and asking for examples of data that could be used. (F) (I)

Ask learners to complete test plans for the programs they write while learning new constructs. (F)

Give learners programs that do not work, either at all or as required. Ask learners to find and correct the errors
using a range of testing methods. (I)

Scheme of Work

 40

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

test plan, and their
likely contents.

Choose appropriate
data for a test plan.

Explain the need for
continuing
maintenance of a
system and the
differences between
each type of
maintenance.

Analyse an existing
program and make
amendments to
enhance
functionality.

Use case studies of companies that have had problems with systems after implementation which required
maintenance (examples of adaptive/corrective/perfective maintenance). Discuss the need for this maintenance
and the potential consequences of not undertaking it.

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)
9618/2 Specimen paper Q2, 6bfile

http://www.cambridgeinternational.org/support

Scheme of Work

 41

Unit 13 Data Representation

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

13.1 User-defined
data types
(KC1)
(KC2)
(KC5)

Explain why user-
defined data types
are necessary.

Define and use non-
composite data
types.

Define and use
composite data
types.

Choose and design
an appropriate user-
defined data type for
a given problem.

Give learners examples of the different pre-determined data types for your chosen language. Discuss the
limitations of these and ask learners how they can get around this problem (e.g. multiple variables/arrays, use
classes, etc.).

Explain the difference between composite and non-composite data types in pseudocode and your chosen
language. Discuss the need for both types.

Give learners a scenario and ask them to decide whether composite/non-composite data types are required for
each data item or series of items. Ask them to justify their choice. (F) (I)

Give learners program code that already has a range of user-defined data types written, and ask them to use
these to create a given program. (I)

Present learners with a scenario and ask them to program a user-defined data type for the program. Ask learners
to justify the data type they created. (F) (I)

Give learners examples of data stored in a data type, and declarations of data types. Ask learners to identify
which are non-composite and which are composite. Extend this to the different types within non-composite and
composite. (F)

Provide learners with programs that define and use a range of data types including user-defined data types, and
ask them to correct the errors. (F) (I)

Extension: Introduce learners to a second programming language that has different data types and allows for
different definitions of user-defined types. Ask learners to compare the languages and these features. (I)

13.2 File organisation
and access
(KC1)
(KC2)
(KC5)

Describe the different
methods of file
organisation.

Describe the different
methods of file
access.

Discuss example programs and the need to store/access data stored externally to the file. Discuss the
consequences of not storing the data accurately.

Put example records/data for a file onto individual pieces of paper. Explain to learners how each method of file
organisation works and ask learners to physically implement this structure using the data by placing the papers in
the correct order as that method would store it. This could also be done using a spreadsheet with the file
locations being the row numbers.

Scheme of Work

 42

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

Select an appropriate
method of file
organisation and file
access for a given
problem.

Describe and use
hashing algorithms.

Describe common hashing algorithms and ask learners to work out the record location for a piece of data or
record using one of these algorithms.

Show learners a series of data stored as a random file but that is full (or nearly full). Ask learners to work out the
file location using the hashing algorithm and ask them what problem occurs – i.e. clashes. Ask learners to work
out what could happen when there is a clash, and how this solution would affect the access of the data. (I)

Give learners example files with large quantities of data stored in a specific organisation method (for example,
using a spreadsheet). Ask learners to use the different methods of file access to find the required data. Discuss
the benefits and drawbacks of each method. (F)

Give pairs of learners a scenario and ask them to decide which file organisation method should be used for
storage and for access. Students should explain their choice with justification. (F)

Provide learners with a range of scenarios or situations (such as number of files, type of data being stored, etc.)
and ask them to group them by the most appropriate method of file organisation, and then access based upon
this. (I)

Show learners how to write code to perform each of the different methods of file organisation and ask them to
implement them in a range of programs. Extend this to use different methods of file access to find and read data
from their files.

Give learners program code that uses different methods of file access and organisation that includes a number of
errors. Ask learners to find and correct the errors. (I)

13.3 Floating-point
numbers,
representation and
manipulation
(KC5)

Describe the format
of binary floating-
point real numbers.

Convert binary
floating-point read
numbers into denary
and vice versa.

Recap binary conversion, two’s complement and addition and subtraction. Ask learners what other types of
number exist that may need to be stored in a computer, i.e. decimals. Show learners how a fixed-point binary
number is calculated.

Give learners numbers to convert into fixed-point and vice versa. Discuss the limitations of fixed-point, i.e. the
binary point is always in the same place, so the range of numbers is limited.

Give learners example numbers to store in set formats and ask learners to work out why they cannot be
represented i.e. there are insufficient bits before/after the binary point. (I)

Scheme of Work

 43

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

Normalise floating-
point numbers.

Explain the
consequences of a
binary representation
only being an
approximation to the
real number it
represents (in certain
cases).

Explain that binary
representations can
give rise to rounding
errors.

Show learners how to convert a fixed-point number into floating-point and vice versa. Give learners a range of
denary numbers to convert into floating-point and then vice versa. Start with positive mantissa and exponents,
then expand this to include negative mantissas, negative exponents and then both as negative. (F)

Show learners a range of floating-point numbers and ask them to identify the mantissa and exponent for each.
(F)

Ask learners to work the largest and smallest numbers that can be represented in that format. Repeat with a
different number of bits in the mantissa and exponent. Ask learners to work out what difference the size of
mantissa and exponent has on the numbers that can be represented. (I)

Show learners how some numbers cannot be exactly represented. Show learners what happens when this
occurs in a program (or on a calculator). Discuss what potential problems this could cause in programs.

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)
9618/3 Specimen paper Q1

http://www.cambridgeinternational.org/support

Scheme of Work

 44

Unit 14 Communication and Internet Technologies

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

14.1 Protocols
(KC3)

Explain why a
protocol is essential
for communication
between computers.

Describe protocol
implements as a
stack, with each
layer having its own
functionality.

Describe the TCP/IP
protocol suite.

Describe the purpose
of the protocols
HTTP, FTP, POP3,
IMAP, SMTP,
BitTorrent.

Ask learners to write a message in binary to another learners. This can be done by writing the binary, or using
lights to flash binary values. Students should not speak to each other prior to, or during, the sending of the
message. Ask learners what problems they encountered – i.e. not knowing what the letters represented, etc. Ask
learners what they need to do before sending – link to protocols and their purpose and what they identify.
Students can then agree protocols and resend the message, which should be more successful this time. (I)

Give learners example protocols and functions of the different layers and ask learners to identify the layer they
belong in. (F)

Relate protocol layers to a physical example, e.g. a series of boxes on top of each other, where one can be
removed, changed and then replaced independently.

Create a crossword of protocols with the descriptions as the clues for learners to complete.

Give learners a series of scenarios and ask them to identify the most appropriate protocol(s) to use, and to justify
their choice. (F) (I)

14.2 Circuit switching,
packet switching
(KC3)

Explain the purpose,
benefits and
drawbacks of circuit
switching and packet
switching.

Justify the use of
packet and/or circuit
switching in a
scenario.

Show learners how data is split into packets and the contents of a packet. Give learners some data to split into
packets (binary data or textual). Ask learners to split the data into packets and complete a packet header for
each.

Act out physical circuit and packet switching using learners as nodes and setting up connections between them,
e.g. using string. One learner acts as the sender, and another as the receiver. When performing circuit switching,
the sender identifies which nodes the message will goes through, then sends it one packet at a time. When
performing packet switching, the sender sends each packet one at a time, then each node decides which way to
send it.

Scheme of Work

 45

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

Give learners statements, benefits and drawbacks about circuit and packet switching, and ask them to identify
which they relate to. (F)

Put learners into pairs and give each pair a scenario. Ask them to decide whether packet or circuit switching is
most appropriate in this situation and to justify their choice. Ask them to describe how their chosen method will
transmit the data. (F) (I)

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)
9618/3 Specimen paper Q2

http://www.cambridgeinternational.org/support

Scheme of Work

 46

Unit 15 Hardware and Virtual Machines

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

15.1 Processors,
Parallel Processing
and Virtual Machines
(KC4)

Describe Reduced
Instruction Set
Computers (RISC)
and Complex
Instruction Set
Computers (CISC)
processors.

Explain the
importance and use
of pipelining and
registers in RISC
processors.

Describe the four
basic computer
architectures (SISD,
SIMD, MISD, MIMD).

Describe the
characteristics of
massively parallel
computers.

Describe the
concept, benefits and
limitations of a virtual
machine.

Give learners example instructions from a RISC and a CISC processor. Ask learners to identify the differences.
Ask learners to work out what the benefits and drawbacks of each could be. Discuss learners’ answers and lead
them to creating a list of benefits and drawbacks. (F)

Give learners a series of statements about RISC and/or CISC and ask learners to identify which relate to RISC
and which to CISC. (F)

Extension: Ask learners to research how some calculations can be performed through combinations of simpler
calculations, for example how division can be performed through subtraction. (I)

Provide learners with a timeline table and the stages of the Fetch-execute cycle for a number of different
processes. Ask them to complete the table by showing which process is being fetched/decoded etc. in each time
period.

Give learners a table with the number of instructions and data as the row and column headings. Ask learners to
put the architectures into the correct position according to the headings. (F)

Give learners examples of instructions that are performed using each of the four architectures. Show learners a
range of applications for each architecture and discuss the differences in application requirements for each
architecture.

Discuss the need for increasing processor power and how instead of increasing the processing power of one
computer, multiple systems can be used in combination.

Ask learners if they have ever used emulator software – popularly used to play console games on a PC. Relate
to the virtual machine concept. Discuss the specific hardware required for the games console and how this is met
by the PC instead. Ask learners for the benefits and drawbacks.

Give learners a list of statements, some true and others false, about virtual machines. Ask learners to identify
which are true and which are false. Discuss the answers. (I)

Extension: Ask learners to research distributed systems and how these compare to parallel computers. (I)

Scheme of Work

 47

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

15.2 Boolean Algebra
and Logic Circuits
(KC4)
(KC1)
(KC5)

Produce truth tables
for logic circuits
including half adders
and full adders.

Describe the function
and create a truth
table for a flip-flop
(SR, JK).

Use Boolean algebra
to manipulate
Boolean
expressions.

Describe the use of,
and use a Karnaugh
map (K-map).

Recap logic circuits from Unit 1. Give learners a series of logic statements and ask learners to produce logic
circuits and truth tables from the statements. (F)

Demonstrate the half adder and full adder. Ask learners to walk through the diagrams keeping track of the values
at each step. Ask learners to work out why they are called a half adder and full adder. (I)

Demonstrate the flip-flop circuit and ask learners what the purpose of its existence is. Link to the name and why it
is called a flip-flop.

Give learners incomplete adder and flip-flop circuits. Ask learners to complete the diagrams.

Extension: Ask learners to draw the adder and flip-flop circuits using only NAND gates. (I)

Show learners two logic statements that have identical outputs and ask learners to work out what the difference
is, i.e. they use a different combination of gates. Discuss how many ways one circuit can be drawn and which is
the best – i.e. the most efficient – and why.

Show learners how to use a K-map to simplify a logic statement. Give learners truth tables to create and
complete K-maps from. Gradually increase the difficulty in the number of inputs. (I) (F)

Explain how K-maps are only one way of simplifying a logic statement. Show learners the Boolean algebra rules
one at a time. Slowly increase the complexity by asking learners to use two rules with one statement, then
increase again.

Give learners incomplete Boolean algebraic expressions with missing components and ask learners to complete
the formulae. (F)

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)
9618/3 Specimen paper Q3

http://www.cambridgeinternational.org/support

Scheme of Work

 48

Unit 16 System Software

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

16.1 Purposes of an
Operating System
(OS)
(KC4)

Explain how an OS
can maximise the
use of resources.

Describe the ways in
which the user
interface hides the
complexities of the
hardware from the
user.

Describe how
processes are
managed by the OS.

Describe the use of
virtual memory,
paging and
segmentation for
memory
management.

Recap on OS functions from AS and the management of memory, hardware etc. Discuss rules the OS can
implement to maximise the use of these resources.

Give learners a list of events that they would regularly perform on a computer, e.g. opening a piece of software,
saving work, listening to music, switching between windows, etc. Put the learners in groups and ask them to
make a list of what they see as a user for each event, and what the OS is actually doing behind the scenes. (I)

Present the concept of a process and the different states a process can be in. Give learners an example of a
process and ask them to identify the events that would move the process between different states.
Get learners to act out the processes. Give each learners the name of a process. Students physically move
between the states depending on a list of events that happen. Read the events one at a time and learners have
to react and move depending on the event and if it impacts them.

Demonstrate the use of virtual memory, paging and segmentation using diagrams on a computer where the data
in memory can be split into pages, and then dynamically moved between the HDD and RAM as different
instructions and data are required.

Give learners a series of facts about virtual memory, paging and segmentation and ask them to identify which of
the three concepts they relate to. (F)

16.2 Translation
Software
(KC4)
(KC1)
(KC2)

Explain how an
interpreter can
execute programs
without producing a
translated version.

Describe the various
stages in the
compilation of a
program.

Provide learners with a short program. As each stage of compilation is explained, ask learners to perform the
actions on the program they have been given – this could be done in pairs. At the end of each stage, ask
learners to compare their results.

Give learners a BNF diagram and ask them what they think it means – discuss the answers and lead them
towards its function and how it works.

Present learners with a scenario (syntax description) and a BNF diagram that is incomplete – ask learners to
complete the diagram. (F)

Scheme of Work

 49

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

Use Backus-Naur
Form (BNF) and
syntax diagrams to
express the grammar
of a language.

Use Reverse Polish
Notation (RPN) to
carry out the
evaluation of
expressions.

Give learners a scenario and BNF diagram that includes errors and ask them to identify them and correct
them.(F)

Give learners program code and a BNF diagram and ask them whether the code is valid/invalid and to justify
their answers.

Present learners with a scenario and ask them to create a BNF diagram from it. (I)

Give learners a BNF diagram and ask them to change it, to introduce more options, and/or restrict the grammar
further. (F) (I)

Extension: Ask learners to write a program to check the syntax of a program that is input against BNF
statements.

Discuss the use of brackets and priorities in mathematical calculations. Ask learners how computers ‘know’ which
action to perform first. Show learners how RPN can tell computers the order to perform the calculations in. Show
learners how stacks are used to represent the RPN expression and how these are evaluated. Give learners a
blank ‘stack’ diagram and an RPN expression; ask them to put the items on the stack and then perform the
calculations one step at a time – getting the item(s) from the stack, performing the calculation and putting the
output back.

Give learners a mathematical expression and ask them to put it into RPN. Repeat but reverse, giving learners an
RPN expression and asking them to turn it into a normal mathematical expression.

Extension: Ask learners to write a program that takes an expression and produces the RPN expression for it.

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)
9618/3 Specimen paper Q4

http://www.cambridgeinternational.org/support

Scheme of Work

 50

Unit 17 Security

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

17.1 Encryption,
Encryption Protocols
and Digital certificates
(KC3)
(KC1)

Define the key terms
associated with
encryption.

Describe the use of
encryption,
symmetric and
asymmetric
encryption.

Explain the purpose
and use of SSL and
TLS.

Explain how digital
certificates are used.

Recap encryption from 6.1 Data security, i.e. purpose and simple encryption algorithms.

With learners working in pairs, give one learner the role of sender and the other that of receiver. Get learners to
act out symmetric and then asymmetric encryption on a method, sending the message between each other and
encrypting and decrypting the message.

Discuss the need for secure connections when online and how SSL and now TLS allow for secure transmissions
between servers and browsers. Relate back to the use of symmetric encryption and the use of handshakes.

Ask learners if they have ever had a website blocked because its digital certificate is invalid, or out of date.
Discuss the contents of a digital certificate. Ask learners to find an example certificate online and describe the
data items included. (I)

Give learners facts about the different methods of encryption, the security protocols and digital certificates. Ask
learners to identify which method they apply to. (I)

Put learners into pairs. Give each pair a scenario where data needs to be transmitted securely. Ask them to
identify an appropriate method of communication and which method they will use to ensure this is secure. Ask
learners to explain their choice to the rest of the class and to justify their decision. (F) (I)

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)
9618/3 Specimen paper Q5

http://www.cambridgeinternational.org/support

Scheme of Work

 51

Unit 18 Artificial Intelligence (AI)

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

18.1 Artificial
Intelligence (AI)
(graphs)
(KC1)
(KC2)

Explain how graphs
can be used to aid
Artificial Intelligence
(AI).

Use A* and Dijkstra’s
algorithms to perform
searches on a graph.

Give learners a graph with labelled nodes. Ask learners to identify all the different ways they could get from one
node to another. Ask learners what the graph and nodes look like (a map, state-transition diagram, etc.) – refer to
abstraction from 9.1 Computational Thinking Skills and what the nodes could represent. Explain the difference
between a directed graph and a non-directed one. Add weights to the graph and ask learners to find the most
efficient path, and write down the list of instructions that they followed to find the shortest distance.

Give learners a scenario where a graph could be used, and ask learners to create a graph for the scenario. Ask
learners to compare their graphs and identify any differences. (I)

Show learners how to perform an A* search and complete a suitable table to keep track of the nodes visited.
Present learners with a graph with a partially completed A* search and ask learners to work together to complete
it. Give learners a graph and ask them to perform an A* search. (F) (I)

Show learners how to perform Dijkstra’s algorithm to perform a search on a graph and complete a suitable table
to keep track of the nodes visited. Give learners a graph with a partially completed Dijkstra’s search and ask
learners to work together to complete it. (I)

Give learners a graph and ask them to perform Dijkstra’s search. (F)

Explain the use of heuristics in the searching algorithms and how they can help decrease the search time.

Ask learners to perform an A* and Dijkstra’s search on the same graph and keep track of the number of nodes
visited, and the final solution found.

Extension: Ask learners to find some further examples where heuristics are used, and if there are any searches
that are more efficient than A* and Dijkstra. (I)

18.1 Artificial
Intelligence (AI)
(applications)
(KC2)
(KC1)

Explain how artificial
neural networks help
with machine
learning.

Put learners in groups and give each group an AI technique and/or method of learning. Ask each group to
research their technique and create a presentation for the rest of the class including case studies of where the
techniques were used. (I)

Give learners case studies of current developments in AI, applications of AI, etc. Ask learners to work in groups,
each with a case study, and identify the AI techniques that may be used, and how the application was developed.

Scheme of Work

 52

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

Explain the use of
Deep Learning,
Machine Learning
and Reinforcement
Learning and the
reasons for using
these methods.

Describe back
propagation and
regression methods
in machine learning.

Use a practical example to show how computers can predict based on stored rules and past events. Link this to
the different types of learning and show learners how the computers ‘decide’ which route to follow, and how
these rules change. Link to relatable scenarios, such as board games or route finding apps.

Simulate machine learning, for example with a game of noughts and crosses, or rock paper scissors. The
computer’s moves can be stored as instructions on paper, or using software, such as in a spreadsheet. The
learners then play the game, using the stored instructions as moves and then change these each time a move is
successful or otherwise. Students can then play their AI games against each other. (I)

Extension: Ask learners to write a program to simulate one of the games discussed, i.e. to create the game of
noughts and crosses with the computer learning its own moves. (I)

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)
9618/3 Specimen paper Q6

http://www.cambridgeinternational.org/support

Scheme of Work

 53

Unit 19 Computational Thinking and Problem-Solving

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

19.1 Algorithms
(searching and
sorting)
(KC1)
(KC2)
(KC5)

Describe a linear and
binary search.

Write algorithms to
implement a binary
and linear search.

Describe an insertion
sort and a bubble
sort.

Write algorithms to
implement an
insertion and bubble
sort.

Recap linear search. Show learners how to perform a binary search. Provide learners with cards with numbers
on, and tell them to put them face down in ascending order. Learners should follow the binary search instructions
to find a specific card.

Give learners program code for a linear and binary search and ask them to trace the algorithms.

Provide learners with the searching algorithms with sections missing and ask learners to complete the missing
statements. (F)

Give learners the searching algorithm statements in individual lines, in a different order. Ask learners to put the
algorithm into the correct order. (F)

Present learners with the searching algorithms with errors in and ask learners to correct the errors. (F)

Give learners inefficient searching algorithms (e.g. excess memory usage, iterations etc.) and ask learners to
improve the efficiency of the algorithms. (I)

Give learners a program to create which requires the searching algorithm(s) and ask learners to implement the
program. (F)

Recap bubble sort. Show learners how to perform an insertion sort. Provide learners with cards with numbers on,
tell them to shuffle them and put them face down in a row. Students should then follow the instructions for an
insertion sort on their cards, turning them over when required.

Give learners program code for a bubble and insertion sort, learners to trace the algorithms.

Present learners with the sorting algorithms with sections missing. Learners should read the algorithms and add
the missing statements. (F)

Give learners a program that needs a sorting algorithm and ask learners to implement it with both algorithms. (F)

Provide learners with inefficient sorting algorithms and ask learners to make them more efficient. (I)

Scheme of Work

 54

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

Provide learners with sorting algorithms that include errors. Ask learners to find the errors and correct them. (F)

Give learners a searching/sorting algorithm without a name and meaningless identifiers and ask them to identify
it.

19.1 Algorithms
(Abstract Data Types)
(KC1)
(KC2)
(KC5)

Describe linked lists,
stacks, queues and
binary trees.

Write algorithms to
find items in a linked
list and a binary tree.

Write algorithms to
insert items into a
stack, a queue, a
linked list and a
binary tree.

Write algorithms to
delete an item from a
stack, a queue and a
linked list.

Explain how an ADT
can be implemented
using a built-in data
type and another
ADT, and write
algorithms to
implement this.

Recap stacks, queues and linked lists theory. For each, ask learners to explain how to add and delete items. Ask
learners to develop this explanation into structured English, and then into pseudocode. Give learners a partial
program that defines the stack/queue/linked list and ask learners to write subroutines to add and delete an item
from the stack/queue/linked list. (F) (I)

Show learners how to create a binary tree. Draw a tree on a board and ask learners to add items one by one to
the tree (e.g. by writing the node and branch). Define the key elements of a tree (e.g. root, branch, leaf). Ask
learners to identify where these elements are on a tree.

Ask learners to explain how to add an item to a binary tree. Students should then develop this into structured
English, then pseudocode. Give learners a program with a linked list implement (e.g. as an array) and ask
learners to implement the insert and delete subroutines. (F) (I)

Show learners an example of a linked list and a binary tree. Ask them to work out how to find an item within it
efficiently. Students can then develop this into structured English and then pseudocode before implementing their
algorithm. (F) (I)

Give learners example ADTs represented on paper and ask learners to add and remove data to/from the
diagrams.

Recap user-defined data types, and arrays and show learners how one ADT can be represented in each
appropriate method (including other ADTs). Ask learners to implement this structure – it could be partially
provided. Ask learners to take this knowledge and apply it to another ADT and work out in groups how to
implement this ADT in other data types (and ADTs). (I)

Give learners scenarios and ask them to work out which ADT is most appropriate. Ask learners to justify their
choice. Students then need to write a program to implement the ADT for the scenario. (F) (I)

Scheme of Work

 55

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

19.1 Algorithms
(performance)
(KC1)
(KC2)
(KC5)

Explain the use of
Big O notation to
specify time and
space complexity.

Compare algorithms
on criteria such a
time taken and
memory used.

Show learners two programs that perform the same actions but with different levels of complexity, e.g. time
and/or space. Ask learners to explain what the differences are and how these could impact the program.

Introduce time and space complexity and Big O notation, one complexity at a time. Relate this back to the
standard algorithms covered, e.g. searching and sorting algorithms.

Extension: Students can write the different algorithms that perform the same function and either get the compiler
to calculate the execution time, or write a timer into the program. Students can then change the number of items,
item being searched for, order of the items, etc., to see how it changes the time it takes the program to run.

Give learners a list of algorithms and complexities. Ask learners to match the time and space complexities to the
algorithms. (F)

Give learners a list of different complexities and ask learners to put them into ascending/descending order of time
for a given scenario (e.g. small number of items). (F)

Put learners into groups and give each details of a scenario. Provide a list of possible algorithms along with the
time and space complexities for each. Ask each group to choose the most appropriate algorithm and to justify it
based on the complexities. (F) (I)

19.2 Recursion
(KC1)
(KC2)
(KC5)

Identify the essential
features of recursion.

Write and trace
recursive algorithms.

Compare the use of
recursion to iteration.

Describe what a
compiler has to do to
translate recursive
programming code.

Show learners a recursive algorithm. Ask them to work out in pairs what is different about this algorithm to other
algorithms. Discuss the differences with a recursive algorithm. Ask learners to trace the algorithm and work out
what happens when it is run. (F) (I)

Give learners a series of recursive algorithms and ask them to identify the key features that each of the
algorithms have – discuss the answers and reduce the list to the essential features of recursion. Discuss what
might happen if one (or more) of these features is missing, e.g. it will never stop if there is no stopping condition.

Show learners how to follow and then unwind a recursive algorithm, keeping track of the function/procedure call
and return values. Give learners a range of recursive algorithms to follow. (I) (F)

Give learners a recursive algorithm in program code. Ask them to write the same program using iteration in your
chosen programming language. This could be completed in pairs to begin with. Repeat with a number of
algorithms and ask learners what the common features/actions are that they follow when converting the
algorithms – create a list of steps for learners to follow when converting an algorithm. Repeat this with the
reverse, i.e. converting an iterative program to a recursive one. (I)

Scheme of Work

 56

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

Discuss the benefits of iteration and recursion, both for the programmer and on the running of the program. Give
learners a list of these benefits and drawbacks and ask learners to identify if they belong to iteration or recursion.
(F)

Discuss the use of a stack in the recursive calls when the compiler runs the code. Ask learners to implement this
using a diagram of a stack and a recursive algorithm, putting the parameters, etc., onto the stack and then calling
them back when it is unwound.

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)
9618/3 Specimen paper Q7
9618/4 Specimen paper Q1, 2, 3

http://www.cambridgeinternational.org/support

Scheme of Work

 57

Unit 20 Further Programming

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

20.1 Programming
Paradigms
(KC1)
(KC2)
(KC5)

Explain what is
meant by a
programming
paradigm.

Write low-level code
that uses various
addressing modes.

Write imperative
programming code
that uses constructs,
procedures and
functions.

Give learners example low-level programs to read and describe what each step does. They can also trace the
algorithms using trace tables. (F)

Identify key sequences that learners may have to write and ask them to read and write this code, for example
incrementing a counter.

Give learners a range of programs (in increasing complexity) written in assembly language that have lines of
code (or sections) missing and ask learners to complete them. (F)

Present learners with programs in assembly language that have errors and ask them to correct them. (I)

Give learners a description of a program, or example pseudocode algorithms, and ask them to write these in
assembly language. Some of these could be performed in pairs to begin with. (F) (I)

Show learners a mixture of lines of assembly language code. ask them to select and order the ones necessary to
solve a problem. (F)

Give learners descriptions of programs to write using procedural program code, increasing in complexity.
Students could also work in groups to produce a program by each developing a subroutine that they can then
combine to create a complete project. (I)

Provide learners with procedural program code that contains errors and ask learners to run the algorithms, find
and replace the errors. (I)

20.1 Programming
Paradigms (OOP)
(KC1)
(KC2)
(KC5)

Use the terminology
associated with
OOP.

Write program code
to solve problems by
designing
appropriate classes

Introduce objects related to physical objects/people and how they have characteristics (attributes/properties) and
can perform actions (methods). Give learners a real-life object/person and ask them to identify the attributes and
methods.

Give learners a scenario and ask them to work in pairs/groups to identify the objects, attributes and methods that
may be required by the program. Students can then program the classes individually. (F) (I)

Scheme of Work

 58

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

and making use of
OOP techniques.

Give learners example OOP code with errors in and/or missing elements; for example, a missing constructor. Ask
learners to find and correct the errors and/or complete the missing items. (F) (I)

Give learners a class diagram and ask them to create a program that meets the requirements of the class. (F)

Discuss inheritance and relate it to real-life objects again, for example vehicles, food, animals, etc. Give learners
example scenarios and ask them to work in pairs to identify the objects and inheritance. (I)

Show and discuss with learners incomplete class diagrams. Ask learners to explain the inheritance between the
classes. (F)

Give learners the terms relating to OOP and definitions and ask them to match them. This could also be done as
a crossword or other puzzle. (F)

Give learners a program that has classes pre-defined and ask learners to implement a program that defines
objects of the class and makes use of them. (I)

Put learners into group and give them a project that requires an OOP. Students need to split the program
development between themselves and decide on the classes, objects, etc., that they need. (I)

20.1 Programming
Paradigms
(Declarative)
(KC1)
(KC2)
(KC5)

Read and write
program code to
solve problems by
writing appropriate
facts and rules.

Give learners a program written in a declarative language. Ask learners to trace the code and work out what each
line means. Discuss their findings and how facts are declared in the language. Give learners a series of
questions starting in English-style sentences, and then gradually introduce syntax for learners to read.

Give learners an example program and ask them to add further facts to the program, and then run queries from
it. (I)

Give learners descriptions of rules and show them how to convert these into declarative language rules. Give
learners some rules for them to explain and to check which facts meet them. Ask learners to change rules,
correct errors in rules (particularly common errors such as ordering) and then write new rules that are given to
them in sentences. (I)

Give learners a scenario and ask them to design and create a declarative language for the scenario. (F) (I)

Extension: Look at systems that make use of declarative languages and get learners to undertake case studies
of these systems and why they use declarative languages.

Scheme of Work

 59

Syllabus ref. and Key
Concepts Learning objectives Suggested teaching activities

20.2 File Processing
and Exception
Handling
(KC1)
(KC2)
(KC5)

Write code to
perform file-
processing
operations.

Explain the
importance of
exception handling.

Write program code
to use exception
handling.

Ask learners to extend programs they have already created to store data e.g. objects created, in files, and to then
reload these when the program starts again. (I)

Give learners a game scenario and ask them to program the game along with a high score table that needs
storing externally. (I)

Learners can create a program where users need to create an account, which must be stored in a file, then they
can only use the program if they give valid log on details. (I)

Recap types of file access and ask learners to write programs that make use of these different methods.

Show learners a program that produces an error and crashes. Discuss the problems with this format (i.e. it
crashes and the program needs to be restarted). Ask learners how this could be handled to avoid the program
crashing and introduce exception handling.

Show learners how to catch exceptions in your chosen language. Provide them with written exceptions and ask
them to read the code and explain each part of it.

Give learners a program and ask them to add exception handling routines to it. (F)

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)
9618/3 Specimen paper Q8
9618/4 Specimen paper Q1, 2, 3,

http://www.cambridgeinternational.org/support

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223 553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2019

mailto:info@cambridgeinternational.org
http://www.cambridgeinternational.org/

	Contents
	Introduction
	Unit 1 Information Representation
	Unit 2 Communication
	Unit 3 Hardware
	Unit 4 Processor Fundamentals
	Unit 5 System Software
	Unit 6 Security, Privacy and Data Integrity
	Unit 7 Ethics and Ownership
	Unit 8 Databases
	Unit 9 Algorithm Design and Problem Solving
	Unit 10 Data Types and Structures
	Unit 11 Programming
	Unit 12 Software Development
	Unit 13 Data Representation
	Unit 14 Communication and Internet Technologies
	Unit 15 Hardware and Virtual Machines
	Unit 16 System Software
	Unit 17 Security
	Unit 18 Artificial Intelligence (AI)
	Unit 19 Computational Thinking and Problem-Solving
	Unit 20 Further Programming

