

Example Candidate Responses – Paper 1 Cambridge International AS & A Level Further Mathematics 9231

For examination from 2022

© Cambridge University Press & Assessment 2023 v1

Cambridge Assessment International Education is part of the Cambridge University Press & Assessment. Cambridge University Press & Assessment is a department of the University of Cambridge.

Cambridge University Press & Assessment retains the copyright on all its publications. Registered centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within a centre.

Contents

Introduction	4
Question 1	6
Example Candidate Response – 1	6
Example Candidate Response – 2	7
Question 2	8
Example Candidate Response – 1	8
Question 3	9
Example Candidate Response – 1	9
Example Candidate Response – 2	11
Question 4	13
Example Candidate Response – 1	13
Example Candidate Response – 2	14
Question 5	15
Example Candidate Response – 1	15
Example Candidate Response – 2	17
Question 6	19
Example Candidate Response – 1	19
Example Candidate Response – 2	21
Question 7	23
Example Candidate Response – 1	23
Example Candidate Response – 2	25

Introduction

The main aim of this booklet is to exemplify standards for those teaching Cambridge International AS & A Level Further Mathematics 9231 and to show how different levels of candidates' performance relate to the subject's curriculum and assessment objectives.

In this booklet, candidate responses have been chosen from the June 2022 series to exemplify a range of answers for all the questions on the question paper.

For each question, the response is annotated with a clear explanation of where and why marks were awarded or omitted. In this way, it is possible for you to understand what candidates have done to gain their marks and what they could do to improve their answers.

This document provides illustrative examples of candidate work with examiner commentary. These help teachers to assess the standard required to achieve marks beyond the guidance of the mark scheme. Please also refer to the June 2022 Examiner Report for further detail and guidance.

The questions and mark schemes used here are available to download from the <u>School Support Hub</u>. These files are:

Past exam resources and other teaching and learning resources are available on the School Support Hub:

www.cambridgeinternational.org/support

How to use this booklet

This booklet goes through the paper one question at a time. The candidate answers are set in a table. In the left-hand column are the candidate answers, and in the right-hand column are the examiner comments.

Example Candidate Response – 1

Examiner comments

1 The asymptotes are correct and clearly identified. Candidates should ensure they label lines and significant points on every graph.

2 Every time they draw a graph approaching an asymptote, candidates should be careful that the curve approaches the line steadily and does not appear to cross it. Here the curve is getting further from the asymptote. Mark for (a) = 2 out of 2

3 Candidates need to check the shape of a curve when it meets the line in which it is reflected. In this case (0, -1) must be shown as a cusp not a turning value. It is often easier to draw if one side is drawn using the original graph and then the second side is drawn separately.

4 Here they are using the positive value of *x* and an equation to find the critical value.

5 This is the correct inequality for positive values of *x*. Some candidates add the line y = -2 to the graph to make it easier to read off the inequalities.

6 Mistakes with inequalities are common. Here they are using the symmetry of the graph, but should check that both inequalities make sense.

Mark for (b) = 2 out of 4

Total mark awarded = 4 out of 6

Example Candidate Response – 2

Examiner comments

1 The asymptotes are correct and clearly labelled. Candidates should ensure they label lines and significant points on every graph.

2 Every time they draw a graph approaching an asymptote, candidates should be careful that the curve approaches the line steadily and does not appear to cross it. Here, they need to show a closer approach to the asymptote. Mark for (a) = 2 out of 2

3 Candidates should check that the graph applies for all values of *x*. Here, they need to show what happens when *x* takes negative values.

4 This part of the graph should not appear. A check of one point lying on it, for example (1, 0), shows that it does not satisfy the equation.

5 The candidate considers the positive value of *x*. For the inequality to remain valid when multiplied by (x - 1), (x - 1) must be positive. It is often easier to work with an equation rather than an inequality to find the critical values.

6 This is the correct critical value for x but the wrong sign. The graph should show which inequality is needed. Mark for (b) = 1 out of 4

Total mark awarded = 3 out of 6

Example Candidate Response – 1	Examiner comments
The cubic equation $x^3 + 5x^2 + 10x - 2 = 0$ has roots α , β , γ .	
(a) Find the value of $\alpha^2 + \beta^2 + \gamma^2$. $\frac{\xi_{\alpha^2}}{z} = (\xi_{\alpha})^2 - 2(\xi_{\alpha}, \beta)$ $= (-\frac{p}{n})^2 - 2(\frac{c}{n})$ $= (-\frac{5}{1})^2 - 2(\frac{c_0}{1})$ $= 5$	1 The candidate clearly shows the way of finding the sums from the coefficients. Mark for (a) = 3 out of 3
(b) Show that the matrix $\begin{pmatrix} 1 & \alpha & \beta \\ \alpha & 1 & \gamma \\ \beta & \gamma & 1 \end{pmatrix}$ is singular.	
$det = 1 \begin{vmatrix} x \\ y \end{vmatrix} - \alpha \begin{pmatrix} \alpha \\ p \\ 1 \end{pmatrix} + p \begin{pmatrix} \alpha \\ p \\ x \end{pmatrix}$ $= 1 \left(1 - \gamma^{2} \right) - \alpha \left(\alpha - p\gamma \right) + p \left(\alpha \gamma - p \right)$	
$= 1 - Y^{2} - \alpha^{2} + \beta \gamma \alpha + \alpha \beta \gamma - \beta^{2}$ $= 1 - (\alpha^{2} + \beta^{2} + \gamma^{2}) + 2 \alpha \beta \gamma (2)$ $= 1 - (5) + 2(-2) \qquad 3$	2 The candidate correctly evaluates the determinant with full working shown.
- 0	Here, the method mark includes correctly finding the product of the roots. The working shows that the candidate uses -2. They need to show that they are substituting +2 for this, and <i>their</i> answer for 2(a) to be awarded the mark. Mark for (b) = 2 out of 4
	Total mark awarded = 5 out of 7

Ex	ample Candidate Response – 1	Examiner comments
3	A curve C has equation $y = \frac{ax^2 + x - 1}{x - 1}$, where a is a positive constant.	
	(a) Find the equations of the asymptotes of C.	
	8-1=0	
	x= · · · · ·	
	axtita	
	x-1 / ax3x-1	
	ax ² -ax	
	(1+a)X-1	
	(1ta)X-1-a	
	. A	
	y=ax+1+a	
	<u>x=1</u>	Both asymptotes are written as equations.
		Mark for (a) = 3 out of 3
,	(b) Show that there is no point on C for which $1 < y < 1+4a$. $ \begin{array}{rcl} & & & & \\ & & & & \\ & & & & \\ & & & &$	2 This is the most usual method. The candidate identifies when there
	$y^2 + (-4\alpha - 2y + 4\alpha + 1 < 0$	the correct discriminant less than zero.
	1 < y < 1749 3	The candidate now needs to relate the inequality above to $1 < y < 1 + 4a$. They could either factorise the discriminant or draw a sketch graph to show that this inequality holds. Mark for (b) = 2 out of 4

Example Candidate Response – 1, continued

(c) Sketch C. You do not need to find the coordinates of the intersections with the axes.

Examiner comments

4 Here, the curve approached the asymptote, but curved away again. Every time the candidate draws a graph approaching an asymptote, they should be careful that the curve approaches the line steadily and does not appear to cross it.

5 Asymptotes look correct, but must be identified. The candidate could write on the equations or show the intersections with the axes.

6 Both shape and position of this branch are good. Mark for (c) = 1 out of 3

Total mark awarded = 6 out of 10

 6	
$\frac{d\pi}{d\pi} = 1$ $\frac{d\pi}{d\pi} = \frac{d\pi}{d\pi} = $	are correctly
(b) Show that there is no point on C for which $1 < y < 1+4a$. (1 + y) = 1 + 4a $(1 + y) = 1 + 4a$ $(1 + y) = 1 + 4a$ $(1 + y) = 1 + 4a$	
$S = \frac{1 + 4xa \times (-1)}{1 + \sqrt{1 + 4a}}$ $S = \frac{1 + \sqrt{1 + 4a}}{2a}$ $2a = \frac{1}{1 + \sqrt{1 + 4a}}$ $a = \frac{1}{1 + \sqrt{1 + 4a}}$	
$\frac{59}{45} = \frac{1}{10} (2abt) - (at+b-1) (2)$ $\frac{2}{10} = 2at+b-2at - 4 - at+b$	ds maximum of y. The g in the

Example Candidate Response – 2, continued

3 These are the correct x values for the stationary points.

4 The candidate has the correct coordinates of stationary points and now needs to relate them to the possible values of v.

5 Now the candidate should show which is a maximum value and which is a minimum value.

6 To complete the solution by this method, the candidate needs to explain why there are no points on the graph between the maximum and minimum. They could say that the graph has two branches separated by an asymptote. Mark for (b) = 1 out of 4

7 Correct asymptotes are clearly labelled.

8 The position and shape are good.

9 This is a common error. When drawing a curve with an asymptote, the curve should always make a consistent approach to asymptote. This one begins to get further away from the line. Mark for (c) = 2 out of 3

Total mark awarded = 6 out of 10

(c) Sketch C. You do not need to find the coordinates of the intersections with the axes.

Examiner comments

Examiner comments

1 The first three terms are shown correctly, and the last two terms are correct. The candidate needs to show carefully how the terms cancel out. As there are three terms for each value of *r*, a group of three terms must be shown, as well as the complete last term. It is often easier to see the pattern when a separate line is used for each value of *r*.

2 The candidate simplifies this to the right answer. This does not need to be simplified further. Mark for (a) = 3 out of 3

3 For convergence of the infinite series, both terms involving n must tend to zero. The candidate is looking for values of x that make this happen.

4 Here, the candidate seems to be saying that the difference of two infinite quantities is zero. Mark for (b) = 0 out of 3

5 It is better to use u_r in the form it is given in the question. Then, there is a multiplication to be changed to addition by taking natural logs.

6 It was a common error to see the logarithm of a sum as the sum of the logarithms. Mark for (c) = 0 out of 3

Total mark awarded = 3 out of 9

Example Candidate Response – 2

$\frac{1}{2}$ $\frac{1}$
ν
$= \rho^{\chi} - \rho^{\chi + 1} + \rho^{(M+7)\chi}$
$-\alpha^{\pi} \left(1 - \alpha^{-\pi} - \alpha^{n\pi} + \alpha^{(n+1)\pi} \right) $
-e $(1-e$ $-e$ $+e$ $)$
luce the set of non-zero values of x for which the infinite series
$u_1 + u_2 + u_3 + \dots$
onvergent and give the sum to infinity when this exists.
$\sum_{r=1}^{\infty} Ur$, for $n-7\infty$
$S_{0} = e^{2} - e^{2} - e^{2} + e^{0 - \pi} + e^{0 - \pi}$
er this to be called part a charter interior
$\mathcal{L}_{m} = \mathcal{N} = \mathcal{N}^{2\pi} - \mathcal{O}^{(n+0)} \left(-1 + \mathcal{N} \right)$
$\frac{p-2}{(n+2)\pi} \begin{bmatrix} n+0\pi \\ n\pi \end{bmatrix} = \begin{bmatrix} n+1\pi \\ n\pi \end{bmatrix} = \begin{bmatrix} n+1\pi \\ n\pi \end{bmatrix}$
$=e^{\kappa r} \cdot (e^{\kappa r} - e^{\kappa})$
$\int \overline{\sigma_{\tau} - h - \overline{\sigma}} c^{\mu \pi} = \rho^{\mu \pi} - \rho^{\mu \pi} - \rho^{\mu \pi} - \rho^{\mu \pi} = \rho^{\mu \pi} - $
when h-700 GAHJ- n+1 60- n x n+2 5
$20 - 407 \times 10^{-7} \times 10^{-7}$
Spanies convergent.
<i>0</i>
$5 = e^{2} - e^{2} = 6$
ing a standard result from the list of formulas (ME10), find $\frac{n}{2}$ lng, in terms of n and n [2]
$\lim_{r \to 0} a \text{ standard result from the fist of romanae (in 19); ind \sum_{r=1}^{n} u_r in terms of n and x. [5]$
$1 - 1 - \frac{1}{2} - \frac{1}{2$
$V^{\mathcal{T}} \rightarrow I^{\mathcal{T}} \rightarrow I^{\mathcal{T}} \rightarrow I^{\mathcal{T}} \rightarrow I^{\mathcal{T}} \rightarrow I^{\mathcal{T}}$
$= h_{1} e_{1} + h_{2} e_{2} + h_{1} + h_{2} $
$= \gamma 7 + e(l - 2) - \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$

Examiner comments

Each term involves three different powers of e. The candidate needs three consecutive values of r to show how the cancellation works. The last term is correct.

2 Many candidates find it easier to write the term for each value of r on a new line to show the pattern for cancellation.

3 The answer is correct. The method is incomplete, so 1 mark is awarded as a special case. Mark for (a) = 1 out of 3

4 The candidate needs to show that both terms involving *n* tend to zero. They should look at values of *x* that make this happen.

5 The candidate tries to say the wo infinities cancel out.

6 This is the correct answer, but it is not proven. Mark for (b) = 0 out of 3

7 Original form for the u_r and correct use of the laws of ogarithms.

8 The second term is the same for all values of r and so could be easily summed.

9 Simplification of the first term is correct, but this needs to be summed.
 Mark for (c) = 1 out of 3

Total mark awarded = 2 out of 9

Examiner comments

1 The answer must be "shear". Mark for (a) = 0 out of 1

2 The candidate should use consistent notation. *k* and *n* are both used here and throughout the proof.

Base case stated true with the matrix shown.

4 The candidate assumes the statement is true for *k*, with the matrix form shown.

5 The correct matrices are multiplied. The candidate needs to show the matrix with a + na before writing down the answer they are trying to prove.

6 This final statement shows the implication. To complete the proof, the candidate should write the matrix form of the result and say it holds for all positive integers n. Mark for (b) = 3 out of 5

Example Candidate Response – 1, continued	Examiner comments
Let $\mathbf{B} = \begin{pmatrix} b & b \\ a^{-1} & a^{-1} \end{pmatrix}$, where b is a positive constant.	
(c) Find the equations of the invariant lines, through the origin, of the transformation in the $x-y$ plane represented by $\mathbf{A}^{n}\mathbf{B}$. [6]	
$A^{n}B = \begin{pmatrix} I & na \\ o & f \end{pmatrix} \times \begin{pmatrix} b & b \\ a^{-1}a^{-1} \end{pmatrix} = \begin{pmatrix} b^{+}n & b^{+}n \\ a^{-1} & a^{-1} \end{pmatrix},$	7 Correct matrices and result.
$\frac{f}{a^{T}} = \begin{bmatrix} f \\ hit \end{bmatrix} = \begin{bmatrix} T \\ mT \end{bmatrix} = \begin{bmatrix} mT \\ mT \end{bmatrix}$	8 This shows the candidate is looking for invariant line and not invariant point.
$\frac{9}{a^{-1} + a^{-1}m} = \overline{m}$	9 The candidate transforms the point, and a correct equation is formed.
$(bfn)m + (bfn)m^{2} = a^{-1} + a^{-1}m.$ $(bfn)m^{2} + (bfn-a^{-1})m \bar{A} a^{-1} = 0.$ (bfn)	10 Correct equation and $(1 + m)$ is a factor on both sides. Factorising would avoid the hard work of using the quadratic formula
$D = (btn - a^{-1})^{2} - 4(btn) - (-a^{-1})$	
$m_{-} - (btn - a^{-1}) \pm \sqrt{btn + a^{-1}}^{2}$	
$\frac{1}{2}(btn)$	
m - m - m - 262n - 1 2(64n) 26+2n	
$\frac{2}{2(b+n)} = -\frac{b-n+a^{-1}+b+n+a^{-1}}{2b+2n} = \frac{a^{-1}}{b+n}$	
$\frac{y_{\pm} - x}{Dr} = \frac{a^{\pm}}{Fr} \times (1)$	11 The candidate provides accurate algebra giving both correct answers. Mark for (c) = 6 out of 6
	Total mark awarded = 9 out of 12

Example Candidate Response – 2	Examiner comments
5 Let $A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$, where <i>a</i> is a positive constant.	
(a) State the type of the geometrical transformation in the x-y plane represented by A. [1]	Mark for (a) = 1 out of 1
(b) Prove by mathematical induction that, for all positive integers <i>n</i> , $A^{n} = \begin{pmatrix} 1 & n & d \\ 0 & 1 \end{pmatrix} \qquad \qquad$	1 This needs to make clear what the statement is.
$P_{I} = \begin{pmatrix} I & \alpha \\ 0 & I \end{pmatrix} = N = P_{I} \text{ is true } 2$	2 Case for $n = 1$ stated to be true with matrix shown.
$n = k = A^{k} = \left(\frac{1}{2} \frac{ka}{k} \right)$	3 This needs to say, "assume that".
$n=k+1: A\cdot A^{k} = \left(\begin{array}{c} 1 & a \\ 0 & 1 \end{array}\right) \left(\begin{array}{c} 1 & ka \\ 0 & 1 \end{array}\right)$	
$= \left(\begin{array}{c} 1 \\ 0 \end{array} \right)^{-\frac{1}{2}}$	
$= \left(\begin{array}{c} 1 & a(k+1) \\ 0 & 1 \end{array} \right)^{-1} + \left(\begin{array}{c} 4 \\ 4 \end{array} \right)^{-1}$	4 The matrix multiplication is shown well.
by marshematical Industrin n is true for an	5 It is good to see the implication written down.
	6 This should show the result in matrix form. Mark for (b) = 3 out of 5

Example Candidate Response – 2, continued	Examiner comments
Let $\mathbf{B} = \begin{pmatrix} b & b \\ a^{-1} & a^{-1} \end{pmatrix}$, where <i>b</i> is a positive constant. (c) Find the equations of the invariant lines, through the origin, of the transformation in the <i>x-y</i> plane [6] $\dots \dots $	
$\frac{\left(\begin{array}{c} 0+\alpha^{-1} \\ b+n \end{array}\right)}{\left(\begin{array}{c} 0+\alpha^{-1} \\ a+\alpha^{-1} \end{array}\right)} = 7$	7 The correct matrix multiplication is well explained.
$\begin{pmatrix} b+n & b+n \\ a^{-1} & a^{-1} \end{pmatrix} \begin{pmatrix} t \\ mt \end{pmatrix} = \begin{pmatrix} T \\ mT \end{pmatrix}$	8 This shows the candidate is looking for invariant lines, not invariant points.
$ \begin{array}{c} 9 \left\{ (btn) t + (btn) mt = T \\ \alpha^{-} t + \alpha^{-} mt = mT \\ \end{array} \end{array} $	9 The candidate transforms the point correctly.
$\frac{bm + nm + bm + nm^{2} = 0}{(b+n)m^{2} + a^{2}m} \frac{m}{m}$ $\frac{bm + nm + bm + nm^{2} = 0}{(b+n)m^{2} + (b+n-a^{2})m - a^{2} = 0} \frac{(m-a^{2})(m+1)}{(m+1)=0} b+n - a^{2}$	10 It is always worth looking for a common factor. This candidate has noticed that the equation has $(1 + m)$ as a factor.
$-\alpha^{7} + m = 0 \qquad \qquad$	11 There is an error in factorisation. Mark for (c) = 5 out of 6
$p_{2} = - \left[\int_{2} \int_{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} - \frac{1}{2} \right]$	Total mark awarded = 9 out of 12

39

aln3

Example Candidate Response – 1, continued

Examiner comments

The region R is enclosed by this part of C, the initial line and the half-line $\theta = \frac{1}{4}\pi$.

(c) It is given that $\sin 2\theta$ may be expressed as $\frac{2\tan\theta}{1+\tan^2\theta}$. Use this result to show that the area of R is

 $\frac{1}{2}a\int_0^{\frac{1}{4}\pi}\frac{1+\tan^2\theta}{1+\tan\theta+\tan^2\theta}d\theta$

and use the substitution $t = \tan \theta$ to find the exact value of this area. [8]
40
$S = S \pm g^2 d \phi$
0 <u> </u>
$2 \neq 2 t \sin 2\theta$
$-\frac{1}{\sqrt{4}} \sqrt{2}$
$= \frac{1}{2} 0 \frac{1}{2 + 2\tan\theta} d\theta$
= 1 C + R 1 + tan 20
2) 0. Htal + Otan O.
t =- tan Q.
$dt = \frac{1}{1+ta^2\theta} = \frac{1+ta^2\theta}{1+ta^2} = \frac{1}{1+ta^2}$
to - ser
$= \frac{1}{2}a \int_{0}^{t} \frac{1+t}{1+t^{2}+t} dt $

+t

1n3

1

In/170+0

240+1

3 The candidate needs to show why this integral is equal to the given answer. They are proving a given result and should put in an intermediate step to move from the line with a fraction in the denominator, to the integral given in the question.

4 This is well done – the stages of the substitution are shown clearly, and the new limits are correct.

5 This was a very common error. Here, the candidate needs to complete the square to make the function into one of the standard integrals that are given in the List of formulae (MF19). Mark for (c) = 3 out of 8

Total mark awarded = 8 out of 13

Example Candidate Response – 1	Examiner comments
7 The position vectors of the points A, B, C, D are	
$7\mathbf{i}+4\mathbf{j}-\mathbf{k},$ $11\mathbf{i}+3\mathbf{j},$ $2\mathbf{i}+6\mathbf{j}+3\mathbf{k},$ $2\mathbf{i}+7\mathbf{j}+\lambda\mathbf{k}$	
respectively. $f = \frac{\lambda + \frac{1}{2} - \frac{1}{2}}{\lambda + \frac{1}{2} - \frac{1}{2}}$	
(a) Given that the shortest distance between the line AB and the line CD is 3, show the $\lambda^2 - 5\lambda + 4 = 0$.	that [7] 1 4
$\vec{AB} = \vec{CB} - \vec{CA} = (\frac{1}{2}) - (\frac{1}{4}) = (\frac{1}{4})$	which helps when reading the work.
$\vec{\sigma} = \vec{\sigma} - \vec{\sigma} = \left(\frac{1}{2}\right) - \left(\frac{1}{2}\right) = \left(\frac{3}{2}\right)$ $\vec{n} = \left(\frac{4}{2}\right) \times \left(\frac{3}{2}\right)$	
$\frac{-\lambda + 2}{-4\lambda + 12}$	
$\begin{pmatrix} -\lambda + 2 \\ -4\lambda + 12 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ -4 \\ -1 \end{pmatrix} = -7\lambda + 14 - 16\lambda + 48 - 4$	Correct direction vector for common perpendicular.
Ξ -25λ+3 2 58	
-2幼+翅始 _ 2	
(3+2) ² +(4)+(2) ² + (4)(4) ³	
$\frac{-(-25\lambda+58)^2}{(1-25\lambda+58)^2} = 9(1)^2 \overline{9}(3)^2 \overline{9}(4) + (1-25\lambda+144+16)^2$	<u>)</u>
5792-26682+3364=927-F-1822-1822+1476	
$\frac{1}{511\lambda^2} = \frac{2488\lambda}{1} + \frac{1888}{1888} = 0$.	3 This is the position vector of A,
	so they are using a wrong formula.
$(-233+58)=9(\lambda^{2}-4\lambda+4+1b\lambda^{2}-9b\lambda+4bv)$	
5.97 - 13,2683 + 34649 = 1553 - 900 + 1476	
3101	
$(-25) + 10^2 - 9[(-25)^2, (-4)^2)^2 + (4^2)]$	
$(276)^2 - (190) + (160) - 0$	Although the candidate is using
$\lambda^2 - \xi \lambda + 4 > 0$	a wrong formula, their attempt to
	reach the given answer by squaring and simplifying to a three-term quadratic scores the last method mark.
	wark for (a) = 4 out of 7

Example Candidate Response – 1, continued	Examiner comments
Let Π_1 be the plane ABD when $\lambda = 1$.	
Let Π_2 be the plane <i>ABD</i> when $\lambda = 4$.	
(b) (i) Write down an equation of Π_1 , giving your answer in the form $\mathbf{r} = \mathbf{a} + s\mathbf{b} + t\mathbf{c}$.	
(ii) Find an equation of Π_2 , giving your answer in the form $ax + by + cz = d$.	5 The candidate needs to show this vector is an attempt at a vector lying in the plane. It could be named, or the subtraction could be shown. Mark for (b)(i) = 0 out of 2
$k = \begin{pmatrix} 7 \\ 4 \end{pmatrix} + 9 \begin{pmatrix} 4 \\ -1 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 1 \\ 1 \end{pmatrix}$	6 This unnamed vector does not lie in the plane. To use the equation in this form both vectors must lie in the plane.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 The candidate is taking the cross-product correctly for <i>their</i> direction vectors.
(c) Find the acute angle between Π_1 and Π_2 .	B The candidate uses a correct point to complete the equation of the plane. Mark for (b)(ii) = 2 out of 4
$\vec{h} = \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ \vec{h} = \begin{bmatrix} 4 & -1 & 1 \\ 2 & 1 & -2 \end{bmatrix} = 2 \times 1 \times 1 \times 1 $	9 Correct cross-product for normal to <i>their</i> plane 1.
$\begin{pmatrix} 8 \\ 4 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \end{pmatrix} = \sqrt{1+8+4^3} \cdot \sqrt{1+4+4} \cos \beta$ $ cos \beta = \frac{q}{21} \qquad 10$ $ cos \beta = \frac{1}{2}$ $ \beta = 70.5^{\circ}$	10 The candidate uses the Scalar product correctly to find acute angle. Mark for (c) = 2 out of 5
	8 out of 18

Example Candidate Response – 2	Examiner comments
7 The position vectors of the points <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are $TI + 4j - k, \qquad 11i + 3j, \qquad 2i + 6j + 3k, \qquad 2i + 7j + Ak$ respectively. (a) Given that the shortest distance between the line <i>AB</i> and the line <i>CD</i> is 3, show that $\frac{\lambda^2 - 5\lambda + 4 = 0.}{TAB} = -T1 + 4 - T1 - 4 + 4 + 4 - 1 - 1 + k $ [7] $\overline{AB} = -11 + 3 - 71 - 4 + 1 + 4 + 1 - 1 + k + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	 The equation is not needed but it should really begin 'r ='. The vectors are correctly named. Candidates who name their vectors find it easier to check their arithmetic and their method. The candidate's method is correct, but they have made one error in expanding brackets. Mark for (a) = 6 out of 7
N2 - 80 N+64 =0	

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554 e: info@cambridgeinternational.org www.cambridgeinternational.org