

Example Candidate Responses – Paper 1

Cambridge International AS & A Level Mathematics 9709

For examination from 2020

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

© Cambridge University Press & Assessment 2021 [v1]

Cambridge Assessment International Education is part of Cambridge University Press & Assessment. Cambridge University Press & Assessment is a department of the University of Cambridge.

Cambridge University Press & Assessment retains the copyright on all its publications. Registered centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within a centre.

Contents

Introduction		4
Question 1		6
Example Candidate Response	— high	6
Example Candidate Response	– middle	7
Example Candidate Response	– IOW	δ
Question 2		9
Example Candidate Response	– high	9
Example Candidate Response	– middle	
Example Candidate Response	– IOW	
Question 3		12
Example Candidate Response	– high	12
Example Candidate Response	– middle	
Example Candidate Response	– IOW	14
Question 4		15
Example Candidate Response	— high	15
Example Candidate Response	– middle	
Example Candidate Response	– IOW	17
Question 5		18
Example Candidate Response	– high	18
Example Candidate Response	– middle	
Example Candidate Response	– IOW	20
Question 6		21
Example Candidate Response	— high	21
Example Candidate Response	– middle	
Example Candidate Response	– IOW	23
Question 7		24
Example Candidate Response	— high	24
Example Candidate Response	– middle	
Example Candidate Response	– IOW	
Question 8		27
Example Candidate Response	– high	27
Example Candidate Response	– middle	
Example Candidate Response	– IOW	29
Question 9		31
Example Candidate Response	– high	31
Example Candidate Response	– middle	
Example Candidate Response	– low	35
Question 10		35
Example Candidate Response	– high	
Example Candidate Response	– middle	
Example Candidate Response	– low	40
Question 11		42
Example Candidate Response	– high	42
Example Candidate Response	– middle	44
Example Candidate Response	– IOW	46

Introduction

The main aim of this booklet is to exemplify standards for those teaching Cambridge International AS & A Level Mathematics 9709 and to show how different levels of candidates' performance (high, middle and low) relate to the syllabus requirements.

In this booklet, candidate responses have been chosen from the November 2020 exam series to exemplify a range of answers.

For each question, the response is annotated with a clear explanation of where and why marks were awarded or omitted. This is followed by examiner comments on how the answer could have been improved. In this way, it is possible for you to understand what candidates have done to gain their marks and what they could do to improve their answers. There is also a list of common mistakes candidates made in their answers for each question.

This document provides illustrative examples of candidate work with examiner commentary. These help teachers to assess the standard required to achieve marks beyond the guidance of the mark scheme. Therefore, in some circumstances, such as where exact answers are required, there will not be much comment.

The questions and mark schemes used here are available to download from the School Support Hub. These files are:

Past exam resources and other teaching and learning resources are available on the School Support Hub:

www.cambridgeinternational.org/support

How to use this booklet

This section explains how the candidate could have improved each answer. This helps you to interpret the standard of Cambridge exams and helps your learners to refine their exam technique.

Common mistakes candidates made in this question

- Obtaining +80 rather than -80 in the binomial expansion.
- Only considering the x^2 term in their binomial expansion.
- Misunderstanding the term 'coefficient' and leaving x^3 in some terms.
- Using incorrect algebraic steps.

Often candidates were not awarded marks because they misread or misinterpreted the questions. Lists the common mistakes candidates made in answering each question. This will help your learners to avoid these mistakes and give them the best chance of achieving the available marks.

Example Candidate Response – high		Examiner comments
1	The coefficient of x^3 in the expansion of $(1 + kx)(1 - 2x)^5$ is 20.	
	Find the value of the constant k. [4]	
	TH-2-12	
	The And Ince	
	(TW) (TW) / (SU) (TV) / SU	
	IN A HAVE A BUX A BUX	
	XVFIVON	
	(1447) XXXXX	
	$(1-2\pi)^{5}$	
	$\gamma^{\circ} \chi^{1} [\gamma^{2}] [\gamma^{3}]$	
	$(5c_2)(1)^3(-2\chi)^2 + (5c_3)(1)^3(-2\chi)^3$	
	10 x 1 x 470 + 10 x 1 x - 3763	
	40 N ² - 80 X ³	
	$(1+kn) (\cdots 90n^{\nu} - 80n^{3} \cdots)$	The candidate shows a
		good, clear method.
	$(1 \times 9 \times 7^3) + (k \times 14 \times 10 \times 1^2) = 20 \times 13 \times 10^{10} = 20 \times 10^{10} \times 10^{10} = -60$	2 A minus sign is missing
	$2 \frac{90}{3} + \frac{40}{10} \frac{1}{10} = \frac{20}{3} \frac{1}{10} \frac{1}{10}$	4 available marks are
	$26^{2}(30+40k) = 202k3$ $k=-3 \pm 100$	awarded.
	40k = 20 - 80	Total mark awarded = 3 out of 4

How the candidate could have improved their answer

The candidate made a good attempt at this question and just needed to check their working.

Exa	mple Candidate Response – middle	Examiner comments
1	The coefficient of x^3 in the expansion of $(1 + kx)(1 - 2x)^5$ is 20. Find the value of the constant k. [4] $\int_{-1}^{5} + \int_{-1}^{6} (x + 2x) + \int_{-1}^{6} (x + 3x)(-2x)^2 + \int_{-1}^{2} (x + 2x)^3 + \int_{-1}^{6} (x + 2x)(-2x)^4$	
	$\frac{ 0x ^{2}x 4x^{2} + 0x x - 8x^{3} = 40x^{2} + 80x^{3}}{(40x^{2} - 80x^{3})(1 + 28hx)}$	1 The candidate finds the correct terms.
	$ \begin{array}{c} -80 \times^{3} + \frac{80}{40} \frac{40}{40} \frac{40}{40} \times \frac{3}{40} \\ -\frac{40}{40} \frac{1}{40} \times \frac{20}{40} \times \frac{1}{40} \\ -\frac{1}{40} \times \frac{1}{40} \times \frac{1}{40} \\ \end{array} $	 2 The candidate makes an error in algebraic simplification. Total mark awarded = 2 out of 4

The candidate could have checked their algebraic simplification.

The candidate could have checked their expansion and algebraic simplification.

- Obtaining +80 rather than -80 in the binomial expansion.
- Only considering the x^2 term in their binomial expansion.
- Misunderstanding the term 'coefficient' and leaving x^3 in some terms.
- Using incorrect algebraic steps.

How the candidate could have improved their answer

The candidate could have checked their final calculation.

Example Candidate Response – middle		Examiner comments
2	The first, second and third terms of a geometric progression are $2p + 6$, $-2p$ and $p + 2$ respectively, where p is positive.	
	Find the sum to infinity of the progression. [5]	
	$S_{\infty} = \underline{q} \qquad r_{\pm} - 2p$ $I - r \qquad 2p + 6$	
	$S_{\infty} = \frac{2p+6}{1-(\frac{-2p}{2p+6})}$	1 This is a correct statement of the sum to
	$= 2p+6 + \frac{4p+6}{2p+6} = 2p+6 + 2p = 4p+6$	infinity in terms of <i>p</i> . The candidate does not seem to realise that they can find a numerical value for <i>p</i> .
	2 <i>p+6</i>	
	<u><u><u><u></u></u><u><u></u><u><u></u><u></u><u><u></u><u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u></u></u>	Total mark awarded = 2 out of 5

The candidate needed to find the value of p and give the sum to infinity as a numerical answer.

Exa	mple Candidate Response – Iow	Examiner comments
2	The first, second and third terms of a geometric progression are $2p + 6$, $-2p$ and $p + 2$ respectively, where p is positive.	
	Find the sum to infinity of the progression. [5]	
	Sol = attain 1-r T=	
	<u>н</u>	
	Ser = -2p	
	2p+6	
	$\frac{r=T_3}{T_2} = \frac{p+2}{2}$	
	$-\frac{\partial p}{\partial z} = p+2$	
	$ap+6^{-2}p$	1 The candidate misses
	(=2p(12p) = p+2(2p+6)	out a bracket which makes the subsequent algebra
	$+p^{2}$ = p + 4p + 12	incorrect.
	$4p^{-} = 5p + 12$	
	$4p^2 - 5p = -12 = 0$	
	(<u>ip))</u>	
	iz 1 2 3.# 1 12 6 4	Total mark awarded = 1 out of 5

The candidate would have found it helpful to use brackets when working with algebraic terms.

- Not realising that the sum to infinity could be given as a numerical value.
- Not using the easier method to find *p* and ending up with an unnecessarily complicated cubic equation instead of a quadratic.
- Thinking that a was equal to p when working out the final answer.
- Obtaining a value of *r* greater than 1 but not realising that this was impossible for a sum to infinity question.

Exa	mple Candidate Response – high	Examiner comments
3	The equation of a curve is $y = 2x^2 + m(2x + 1)$, where m is a constant, and the equation of a line is $y = 6x + 4$.	
	Show that, for all values of m , the line intersects the curve at two distinct points. [5]	
	$y = 2x^2 + m(2x+1)$ $y = 6x + 4$	
	$=2\pi^2 + 2\pi M \chi + M$	
	$Q_{x}^{2} + 2mx + m = 6444$ $Q = 2 = b = (2m-6)$	
	$2x^{2} + 2mx - 6x + m - 4 = C$	
	$2x^{2} + 2x(2m-6) + m-4 = 0$	
	62-4ac SC	
	$\frac{1}{10^2}$ $\frac{1}{10^2}$ $\frac{1}{10^2}$ $\frac{1}{10^2}$	
	$\left(\frac{\alpha(n-6)}{\sqrt{2}}\right) = -\tau(c)\tau(m-4)$	
	$4m^2 - 24m + 36 - 8(m - 4)$	
	$[4 Lm^2 - 8m + 17]$	
	$4m^2 - 24m+36 - 8m+32$	
	Lana (L(11)	
	$4 [(m-4)^2 + 1]$	1 The candidate correctly completes the required mathematics for this
	y = 0(4) + 9 = 28 B. (4,28) 4(m-4) ² + 4 1	question but does not clearly demonstrate that they understand
	y = 6(-4) + 4 = -20 x = 4	the implications of their workings.
	(-4,-20)	Total mark awarded = 4 out of 5

How the candidate could have improved their answer

The candidate needed to use clear reasoning and give a correct conclusion at the end of the question.

Example Candidate Response – middle		Examiner comments
3	The equation of a curve is $y = 2x^2 + m(2x + 1)$, where <i>m</i> is a constant, and the equation of a line is y = 6x + 4. Show that, for all values of <i>m</i> , the line intersects the curve at two distinct points. [5] $y = 2x^2 + m(2x+1) = 6x + 4$ $2x^2 + 2mx + m = 6x + 4$ y = 6x + 4 $2x^2 + 2mx + m = 6x + 4$ y = 6x + 4 $2x^2 + 2mx + m = 6x + 4$ y = 6x + 4 y = 6x + 4 $2x^2 + 2mx + m = 6x + 4$ y = 6x + 4 $2x^2 + 2mx + m = 6x + 4$ y = 6x + 4 $2x^2 + 2mx + m = 6x + 4$ y = 6x + 4 $2x^2 + 2mx + m = 6x + 4$ y = 6x + 4 $2x^2 + 2mx + m = 6x + 4$ y = 6x + 4 $2x^2 + 2mx + m = 6x + 4$ y = 6x + 4 y =	 The candidate produces correct working except for the < sign, but then doesn't finish the question.
	(m (m)	3 out of 5

- The candidate should have omitted the < sign.
- The candidate could have written the discriminant in completed square form and then interpreted it.

- The candidate could have found the discriminant correctly.
- The candidate needed to consider all values of *m*, not just two particular values.
- The candidate could have written the discriminant in completed square form and then interpreted it.

- Assigning a particular value or values to *m* rather than considering all possible values.
- Not equating the line and curve.
- Calculating the discriminant of the curve only.
- Algebraic errors when simplifying the equation.
- Misunderstanding what *a*, *b* and *c* relate to in the discriminant.
- Not realising the need to complete the square on the resulting quadratic in *m* (or equivalent method).
- A lack of clear and correct reasoning at the end of the question.

Example Candidate Response – high	Examiner comments
Example Candidate Response – high 4 The sum, S_n , of the first <i>n</i> terms of an arithmetic progression is given by $S_n = n^2 + 4n$. The <i>k</i> th term in the progression is greater than 200. Find the smallest possible value of <i>k</i> . So $= 0 (2a + (n-1)d) = n^2 + 4n$. So $= 0 (2a + (n-1)d) = n^2 + 4n$. $a = 1 + n^2 d - nd = n^2 + 4n$. a = 2 $= n^2 d - nd + na = n^2 + 4n$. a = 2 a = -4a = 4 a = 2 a = -5 $U_k = a + (k-1)d > 200$ 5 + (k-1) 2 > 200 $a = 5 + k^{-1} > 100$	Examiner comments
2.5 + k - 1 > 100	
K > 100 - 1.5 K > 98.5	2 The candidate does not realise that <i>k</i> needs to be a whole number.
K = 98.5 2	Total mark awarded = 4 out of 5

How the candidate could have improved their answer

The candidate needed to realise that k must be a whole number.

- The candidate confused the *n*th term with the sum of the first *n* terms.
- The candidate did not use the correct formula for S_2 .

Example Candidate Response – Iow	Examiner comments
4 The sum, S_n , of the first <i>n</i> terms of an arithmetic progression is given by $S_n = n^2 + 4n$.	
The kth term in the progression is greater than 200. Find the smallest possible value of k. $S_{n} = n^{2} + 4_{n}$ first term : $S_{1} = n^{2} + 4_{n}$ $S_{1} = i^{2} + 4(i)$ $= i + 4$ $= 5$ 1 tenth term = $S_{10} = i0^{2} + 4(i0)$ $= i00 + 40$ $= 140$	[5]
$ \begin{cases} \text{fhirteenth} \text{ferm} = S_{13} = 13^2 + 4(13) \\ = 169 + 52 \\ = 221 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	

The candidate confused the nth term with the sum of the first n terms.

- Not reading the question carefully enough and confusing the *n*th term with the sum of the first *n* terms.
- Equating the given formula for the sum of the first *n* terms with the general formula but not realising that this was an identity, not an equation, so that coefficients could be compared.
- Not realising that *k* needed to be a whole number.

Example Candidate Response – high	Examiner comments
5 Functions f and g are defined by $f(x) = 4x - 2, \text{ for } x \in \mathbb{R},$ $g(x) = \frac{4}{x+1}, \text{ for } x \in \mathbb{R}, x \neq -1.$ (a) Find the value of fg(7). $f(x) = \frac{4}{x+1}, \text{ for } x \in \mathbb{R}, x \neq -1.$ (b) $f(x) = \frac{4}{x+1}, f(x) \in \mathbb{R}, x \neq -1.$ (c) $f(x) = \frac{4}{x+1}, f(x) \in \mathbb{R}, x \neq -1.$ (c) $f(x) = \frac{4}{x+1}, f(x) \in \mathbb{R}, x \neq -1.$ (c) $f(x) = \frac{4}{x+1}, f(x) \in \mathbb{R}, x \neq -1.$ (c) $f(x) = \frac{4}{x+1}, f(x) \in \mathbb{R}, x \neq -1.$ (c) $f(x) = \frac{4}{x+1}, f(x) \in \mathbb{R}, x \neq -1.$ (d) $f(x) = \frac{4}{x+1}, f(x) \in \mathbb{R}, x \neq -1.$ (e) $f(x) = \frac{4}{x+1}, f(x) \in \mathbb{R}, x \neq -1.$ (f) $f(x) = \frac{4}{x+1}, f(x) \in \mathbb{R}, x \neq -1.$ (f) $f(x) = \frac{4}{x+1}, f(x) \in \mathbb{R}, x \neq -1.$ (g) $f(x) = \frac{4}{x+1}, f(x) \in \mathbb{R}, x \neq -1.$ (h) $f(x) = \frac{4}{x+1}, f(x) \in \mathbb{R}, x \neq -1.$ (h) $f(x) = \frac{4}{x+1}, f(x) \in \mathbb{R}, x \neq -1.$ (h) $f(x) = \frac{4}{x+1}, f(x) = \frac{4}{x$	
$= 0$ (b) Find the values of x for which $f^{-1}(x) = g^{-1}(x)$. $f^{-1}(\chi) : \chi = 444 - 3$ $444 - 34$	1 The candidate gives a correct response. Mark for (a) = 1 out of 1
$\begin{array}{rcl} \chi(y_{f1}) = 4\\ y_{f1} &= 5t\\ y_{f2} &= 5t\\ y_{f3} &= 5t\\ y_{f3}$	2 The candidate provides a correct response up to this point.
$\frac{-2}{243} = \frac{1}{24} - \frac{1}{24} = \frac{1}{24} - \frac{1}{24} = \frac{1}{24$	3 The candidate does not show a method for solving the quadratic equation so even though the final answers are correct, no marks can be awarded. Mark for (b) = 3 out of 5
$\chi = 2 \qquad \text{on} \chi = -8^{3}$	Total mark awarded = 4 out of 6

How the candidate could have improved their answer

The candidate could have shown their method for solving the quadratic equation.

- The candidate could have checked their algebraic re-arrangement to form the correct quadratic equation.
- The candidate could have shown their method for solving the quadratic equation.

Example Candidate Response – Iow	Examiner comments
5 Functions f and g are defined by $f(x) = 4x - 2$, for $x \in \mathbb{R}$, $g(x) = \frac{4}{x+1}$, for $x \in \mathbb{R}$, $x \neq -1$.	
(a) Find the value of fg(7). [1] $\frac{\psi(\frac{U}{7+1}) - 2}{2} = 0$	1 The candidate's response is correct. Mark for (a) = 1 out of 1
(b) Find the values of x for which $f^{-1}(x) = g^{-1}(x)$. [5] $ \underbrace{f'(c)}_{(1c-2)-\mu} = G $	
$\begin{array}{c} 4 = \frac{4}{4}\\ 4 = \frac{4}{4}$	2 The candidate's method
$\frac{\frac{y_{c-2}}{4} - \frac{4}{x} + 1}{\frac{y_{c-2}}{4} - \frac{4x}{1} + \frac{1}{x}}$	 is correct for both inverse functions, but the candidate makes mistakes when rearranging them. 3 The candidate reaches
$\frac{-4}{6} - \frac{16}{6} = c$ $\frac{16}{3} = c$	an incorrect quadratic equation and does not show their method for solving it. Mark for (b) = 0 out of 5
xc= 8 d -2	Total mark awarded = 1 out of 6

- The candidate could have been more careful when finding the inverse functions.
- The candidate could have shown their method for solving the quadratic equation.

- Not showing a method for solving the quadratic equation.
- Rearranging errors when trying to find the inverse functions.
- Algebraic errors when trying to simplify the equation formed by equating the two inverse functions.

Example Candidate Response – high	Examiner comments
6 (a) Prove the identity $\left(\frac{1}{\cos x} - \tan x\right) \left(\frac{1}{\sin x} + 1\right) = \frac{1}{\tan x}$. [4]	
$= \frac{1}{\cos x} + \frac{1}{\sin x} + \frac{1}{\sin x} + \frac{1}{\sin x}$	
1 t corrations o 1 + sinsc	1 The candidate makes a
Cost 510 90	but it is corrected on the next line.
= 1 t - sinz	
$\frac{(1+s)n2c}{2} = \frac{(1+s)n2c}{2} = (1$	
<u>Cosse</u>	
$= \frac{2}{1+2\sin^2 x} = \frac{\cos^2 x}{\cos^2 x}$	
cosx. sinx cosx. sinx	
$\frac{1 + \sin 2 + \sin 2}{\cos 2 \cdot \sin 2} = \frac{2}{\sin 2} = \frac{2}{\sin 2}$	2 The rest of the proof is correct so full marks are
(b) Hence solve the equation $\left(\frac{1}{1} - \tan x\right) \left(\frac{1}{1} + 1\right) = 2\tan^2 x$ for $0^\circ < x < 180^\circ$ [2]	awarded. Mark for (a) = 4 out of 4
$(a) \text{ there exists an equation } (\cos x - \tan x)(\sin x + 1)^{-2} \tan^2 x + 1010 = 4 \le 100.$	
tanc	
$= \frac{1}{2} = \frac{1}{2} \tan x$	
$3/\tan^{3}sc = 3/2$	3 The candidate includes
$\frac{1}{12} \frac{1}{12} = \frac{3\sqrt{1/2}}{12}$	an invalid extra answer in the given interval, so only 1 mark is awarded
2c = 38, 4 3	Mark for $(b) = 1$ out of 2
180 - 38, 4 = 141, 6 : 38, 4° and 141, 6°	Total mark awarded = 5 out of 6

How the candidate could have improved

- The candidate included an extra, invalid answer in the interval in part (b).
- The candidate could have checked the interval again at the end of the working to ensure that all answers given were valid.

How the candidate could have improved

The candidate should have included the line $=\frac{1-\sin^2 x}{\cos x \sin x}$ before using the Pythagorean identity. All necessary steps must be shown, especially in 'Prove' or 'Show that' questions.

Example Candidate Response – Iow	Examiner comments
6 (a) Prove the identity $\left(\frac{1}{\cos x} - \tan x\right)\left(\frac{1}{\sin x} + 1\right) = \frac{1}{\tan x}$. [4] $\frac{L \cdot H \cdot S}{L \cdot (L + 1)} - \tan x \left(\frac{L}{+1} + 1\right)$ $\frac{L \cdot X + 1}{\cos x} - \tan x \left(\frac{L}{+1} + 1\right)$ $\frac{L \cdot X + 1}{\cos x} - \sin x - \sin x$ $\frac{L \cdot X + 1}{\cos x} - \sin x - \sin x$ $\frac{L \cdot X + 1}{\cos x} - \sin x - \sin x$ $\frac{L \cdot X + 1}{\cos x} - \sin x - \sin x$ $\frac{L \cdot X + 1}{\cos x} - \sin x - \sin x$ $\frac{L \cdot X + 1}{\cos x} - \sin x - \sin x$ $\frac{L \cdot X + 1}{\cos x} - \sin x - \sin x$ $\frac{L \cdot X + 1}{\cos x} - \sin x - \sin x$	Examiner comments
$\frac{1}{\cos x} \int \frac{1}{\sin x} \frac{1}{\cos x} \int \frac{1}{\cos x} \int \frac{1}{\sin x} \int \frac{1}{\cos x} \int \frac{1}{\sin x} \int \frac{1}{\sin$	1 The candidate carries out correct algebraic manipulation but misses out the final stages of simplification. Mark for (a) = 2 out of 4
(b) Hence solve the equation $\left(\frac{\cos x}{\cos x} - \tan x\right)\left(\frac{\sin x}{\sin x} + 1\right) = 2 \tan x \operatorname{for} 0 \le x \le 100$. [2] $\frac{1}{2 \tan^2 x} = \frac{2 \tan^2 x}{1}$ $\frac{2 \tan^2 x}{2} = \frac{1}{2}$ $\frac{2 \tan^2 x}{2} = \frac{1}{2}$	 2 The candidate's statement is correct so the method mark is awarded. 3 The candidate's statement is incorrect so the accuracy mark is not awarded.
$x = 2.9^{\circ}$ $x = 177.0^{\circ}$	Mark for (b) = 1 out of 2 Total mark awarded = 3 out of 6

- The candidate could have attempted the final stages of the proof.
- The candidate appears to have misunderstood the notation $\tan^3 x$.

- Missing out stages in the proof.
- Mistakes adding and multiplying the algebraic fractions.
- Making the algebra more difficult than it needed to be by not using the **lowest** common denominator when adding the fractions.
- By including extra, invalid solutions in part (b), especially 141.6.
- Not realising that they needed to use the result from part (a) in part (b).

Example Candidate Response – high	Examiner comments
Example Candidate Response - high 1 The point (4, 7) lies on the curve $y = f(x)$ and it is given that $f'(x) = 6x^{\frac{1}{2}} - 4x^{\frac{3}{2}}$. (a) A point moves along the curve in such a way that the x-coordinate is increasing at a constant rate of 0.12 units per second. Find the rate of increase of the y-coordinate when $x = 4$. (3) $\frac{6x}{24} = -0.9$ $\frac{1}{24} = -6x^{-\frac{1}{2}} - 4x^{-\frac{3}{2}}$ $\frac{1}{24} + \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$ $\frac{1}{24} + \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2$	Examiner comments 1 The candidate gives a correct answer. Mark for (a) = 3 out of 3 2 The candidate tries to do the working out in their head and makes a sign error. This should be +8 not -8. If they had written down $\frac{-4}{-0.5}$ they would have been awarded the mark. 3 The candidate makes errors in substituting values. 4 The candidate does not use the <i>y</i> -coordinate of 7 but equates to 0, so no mark can be awarded for the method. Mark for (b) = 1 out of 4
	Total mark awarded = 4 out of 7

How the candidate could have improved

- The candidate could have shown intermediate steps in part (b), for example $\frac{-4}{1}$.
- The candidate should have used y = 7, as well as the *x*-coordinate of the given point to find *c*.

 $\overline{2}$

Example Candidate Response – middle	Examiner comments
7 The point (4, 7) lies on the curve $y = f(x)$ and it is given that $f'(x) = 6x^{-\frac{1}{2}} - 4x^{-\frac{3}{2}}$.	
(a) A point moves along the curve in such a way that the x-coordinate is increasing at a constant rate of 0.12 units per second.	
Find the rate of increase of the y-coordinate when $x = 4$. [3] $f'(x) = 6x^{1/2} - 4x^{-3/2}$	
$\frac{912}{01} = 0.1172$	
$\frac{dY}{dy} = 6\frac{dx^2}{dy^2} + 4\frac{dx^3}{dy^2}$	
$\frac{dt}{dt} = \frac{ds}{ds} \times \frac{dt}{dt}$	
0.12×6(4)-4/453/2 1	1 The final answer is correct so full marks are awarded, although some
<u>= 0,3</u>	extra brackets would have helped with clarity. Mark for (a) = 3 out of 3
(b) Find the equation of the curve. [4] gradient = $\beta x^{-1/2} - 4x^{-3/2}$	
$= 6(4)^{-1/2} - 4(4)^{-3/2}$	
= 2.5	
y = mx + c. 7 = 2.5(4) + c.	2 The candidate uses the equation of a straight line instead of integrating. Mark for (b) = 0 out of 4
7=10+0-	
7-10= C.	
-3 = 0	
$\frac{y=2.500^{-5}}{2}$	
	Total mark awarded = 3 out of 7

- The candidate could have produced a clearer solution by including an extra set of brackets in part (a).
- The candidate needed to integrate in part (b) rather than use the equation of a straight line.

- The candidate could have produced a clearer solution by including an extra set of brackets in part (a).
- The candidate needed to take more care entering the values into their calculator or make sure to check later.
- The candidate needed to integrate in part (b).

- Dividing 2.5 by 0.12 or 0.12 by 2.5 rather than multiplying them.
- Treating the curve in part (b) as a line.
- Either not integrating or integrating incorrectly.

• Simplifying
$$\frac{6}{\frac{1}{2}}$$
 to equal 3 and $\frac{-4}{-\frac{1}{2}}$ to equal 2 or -2.

Example Candidate Response – high	Examiner comments
8 $A \xrightarrow{V} D \\ \theta \text{rad} \\ r \text{cm} \xrightarrow{V} D \\ r \text{cm} + r \theta \\ B \\ 20 + \alpha = T \\ \alpha = \tau - 20$	
In the diagram, ABC is an isosceles triangle with $AB = BC = r \operatorname{cm}$ and angle $BAC = \theta$ radians. The point D lies on AC and ABD is a sector of a circle with centre A.	
(a) Express the area of the shaded region in terms of r and θ . [3]	
Area of shaded = Nea of D - Area of Sector ABD	
Area of sector = $1r^{-1}Q$	
Area of $\Delta = 1 \times Y \times Y \times Sin(\pi - 20)$	
$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}$	
Shaded Area = 1 2 Sin(x-20) - 1 220	
$= \frac{1}{2} \frac{v^2 \mathcal{B}(Sin(x-2\mathcal{B}) - \mathcal{O})}{2}$	 The candidate gives a correct response. Mark for (a) = 3 out of 3
(b) In the case where $r = 10$ and $\theta = 0.6$, find the perimeter of the shaded region. [4]	
Arc DB = rQ	
$= 10 \times 0.6$	
_ / .	
- 0 m B	
$\frac{B}{1 - 0} = 0.6 \text{for } 0.6 = \frac{B}{10}$	
$v = 10$ $\cos 0.6 \times 10 = B$ r //r	
8-3=B 2 2 → B → B	2 The candidate uses
2B=Y+K	premature approximation
16.6 =10+X	leads to an inaccurate final
beb=rc.	Mark for $(b) = 3$ out of 4
Perimeter = Arc AB + r + (6.6)	
= 6 +10 +6.6	
<u>-22-6cm</u>	Total mark awarded = 6 out of 7

How the candidate could have improved their answer

The candidate needed to work to at least four significant figures in part (b) so that the final answer would be correct to three significant figures when rounded.

Example Candidate Response – middle

8 θ rad In the diagram, ABC is an isosceles triangle with AB = BC = r cm and angle $BAC = \theta$ radians. The point D lies on AC and ABD is a sector of a circle with centre A. (a) Express the area of the shaded region in terms of r and θ . [3] hangle af 1 The candidate gives an ...Hr.ea. incorrect formula for the area of triangle ABC. A131) = 1,20 2 The candidate gives a 2 correct formula for the area of the sector ABD. 120 (egion = 3 The candidate is awarded the final follow through mark as they (b) In the case where r = 10 and $\theta = 0.6$, find the perimeter of the shaded region. [4]: subtract the correct sector AB(÷ JI-0.6-0.6 area from what they think is the area of ABC. 941 iadiuns Mark for (a) = 1 out of 3 AL sin1.941 5:00.6 37 57 cm 16. h ÐB z 6 cm 37-75 length = 16.57 4 The candidate gives a correct response. Mark for (b) = 4 out of 4 6+10+6.52 B= Permiter DC · 57 im Total mark awarded = 5 out of 7

Examiner comments

How the candidate could have improved their answer

The candidate did not use a correct formula to calculate the area of triangle ABC.

Example Candidate Response – Iow	Examiner comments
8 A derad rem rem B	
In the diagram, ABC is an isosceles triangle with $AB = BC = r$ cm and angle $BAC = \theta$ radians. The point D lies on AC and ABD is a sector of a circle with centre A.	
(a) Express the area of the shaded region in terms of r and θ . [3] $\frac{A + \theta \in \theta - \theta \in \theta - \theta}{2} =$	
Alea of Sedor ABD = $\int i^3 \theta$ a 1	1 This is correct for the
$\frac{AC^{2}}{AC^{2}} + \frac{1^{2}}{A} - A(f_{X}) \cos \theta$ = $(^{2}+1)^{2} - A(^{2}) \cos \theta$	area of the sector.
$= 3i^{2} - 3i^{3} cose$ $= (3i^{3}(1 - cose))$	
$\frac{AC=\sqrt{a} r (1-\cos \theta)}{Area of ABC= 1 x \sqrt{a} r (1-\cos \theta) x r}$	2 The candidate gives an
Area of $B(D = 1 r \sqrt{2r(1 - case)} - 1 r^3 e$ 3	ABC.
$= 1 \cdot (\sqrt{3 \cdot (1 - \cos \beta)} - 1 \circ)$	3 The candidate subtracts the area of the sector from their triangle area so is
(b) In the case where $r = 10$ and $\theta = 0.6$, find the perimeter of the shaded region. [4]	mark. Mark for $(a) = 1$ out of 3
$\frac{\text{kength of Arc ABD} = 10(0.6)}{= 6 \text{ cm}}$	4 The candidate gives a correct arc length.
$AC = \sqrt{2(10)(1 - COSO(6))}$	
$= \sqrt{ao(1/coso.6)}$	
= 0,48112	
$AC^{2} = 10^{2} + 10^{2} - 2(10)(10) \cos 0.6$ 5	5 The candidate uses
= 300 - 200 (050) 6	no method marks are
= 5,9104	awarded. Mark for (b) = 1 out of 4
DC= 5.9104 -10	
= -4 089	
1000000000000000000000000000000000000	Total mark awarded = 2 out of 7

- The candidate could have calculated the correct area of the triangle in part (a).
- The candidate needed to use the correct angle in the cosine rule in part (b).

- Using 180 degrees instead of π radians in formulae that are only valid when radians are used.
- Only working out half of the area of triangle *ABC*.
- Giving the general form for the area of a triangle, $\frac{1}{2}r^2\sin\theta$, as the answer for the area of *ABC*.
- Using 0.6 instead of $(\pi 2 0.6)$ in the cosine rule to find the length of AC.

Example Candidate Response – high, continued	Examiner comments
The other tangent from D to the circle touches the circle at E . (c) Find the coordinates of E . [2]	
$m \circ \int DE = \int \frac{a}{11 + 2} = 5$	
y - 16 = 2(x - 5)	
y - 16 = 2x - 10 $y + x = 1y = 2x + 6$ 2	
$(x-5)^{2} + (y-1)^{2} = 46$	
$\frac{(\chi - 10)}{(\chi - 10)} + \frac{1}{(\chi - 10)}$	
$5x^{2} + 30x + 5 = 0$ $5x^{2} + 5x + 5x + 5 = 0$	
5x(x+1)+5(x+1)=0	
$\frac{z = -1}{y = -2}$	 The candidate gives a correct response. Mark for (c) = 2 out of 2
$\frac{y = + y}{(-1, y)^3}$	Total mark awarded = 8 out of 9

In part (b), the candidate needed to mention the fact that, since the product of the gradients of two lines was -1, this implied that the lines were perpendicular. All necessary steps and explanations must be given, especially in 'show that' or 'prove' questions.

Example Candidate Response – middle, continued	Examiner comments
The other tangent from D to the circle touches the circle at E. $D(5, 16)$ (c) Find the coordinates of E. [2] D(2=), Y = -2x + C $16 = -2(5) + CY = -2x+26Y = -2x+26D(2=), Y = -2x + C$ $0Y = -2x+26D(2=), Y = -2x + C$ $0Z = -2x$	 The candidate makes no progress in this part of the question. Mark for (c) = 0 out of 2
\mathcal{D}	fotal mark awarded = 4 out of 9

- The candidate needed to use a valid method to find the radius in part (a).
- Having found gradients that multiply to -1 in part (b), the candidate needed to explain what this implied, i.e., that the lines were perpendicular and hence DC was a tangent to the circle.
- The candidate could have attempted a correct method in part (c) with the help of their diagram.

Example Candidate Response – Iow	Examiner comments
9 A circle has centre at the point $B(5, 1)$. The point $A(-1, -2)$ lies on the circle. (a) Find the equation of the circle. (b) $A = A = A = A = A = A = A = A = A = A $	 The radius is correct so the candidate is awarded 1 mark. The candidate does not use the given centre so cannot be awarded any further marks. Mark for (a) = 1 out of 3
(b) Show that DC is a tangent to the circle. [4] $f_{M-} \longrightarrow f_{16} \land (11, 4) \longrightarrow (5, 16) \longrightarrow 16-4, z-2 \ 3$ F_{-1} $g_{-2} \implies g_{-2} \implies g_{-2$	 3 The candidate has found point <i>C</i> correctly and the gradient of <i>CD</i>, but makes no further progress so they are awarded 2 marks. Mark for (b) = 2 out of 4 4 The candidate does not attempt part (c). Mark for (c) = 0 out of 2
	Total mark awarded = 3 out of 9

- The candidate needed to use the given centre in their equation in part (a).
- The candidate could have found the gradient of AB (or BC or AC) in part (b).
- The candidate could have attempted part (c), perhaps with the help of a diagram.

- Using the equation of a straight line in part (a) rather than the equation of a circle.
- Thinking that the radius was 45 not $\sqrt{45}$.
- Writing the equation as $(x-5)^2 + (y-1)^2 = \sqrt{45}$, not 45 on the right-hand side.
- Not explaining the implications of their working in part (b): if the product of the gradients of two lines equals -1, this implies that they are perpendicular.

Example Candidate Response – high, continued	Examiner comments
(b) Find, by calculation, the x-coordinate of M . [2]	
$3(3-2\pi)^{-3}-1=0$	2 Setting $\frac{dy}{dx}$ equal to 0 is
$B(3-2\pi)^{-3} = 1$	a much easier method than setting $y = 0$.
$\frac{(3^{-2}x)^{3}}{(3^{-2}x)^{3}} = 1$	
$3\sqrt{8}=3(3-2\pi)^3$	
$\chi = 3 - 2\chi$ $-1 = -2\chi$	3 The candidate gives a correct response.
$\chi = \frac{1}{2} \cdot 3$	Mark for (b) = 2 out of 2
 	4 The candidate clearly shows both limits substituted which is best practice. It is important
(c) Find the area of the shaded region bounded by the curve and the coordinate axes. [2] $Aieq = \chi (3 - 2\pi c)^{-1} - \chi^{2}$	when using 0 as a limit in integration questions that candidates don't assume the value of that part of the expression will equal 0.
$\left[\left(3 - 2\pi \right)^{-} - \pi^{2} \right]_{0}^{2}$	5 Because the integral from part (a) is incorrect, the final answer is incorrect
$ \begin{bmatrix} (3-2(1/2))^{-1} - (1/2)^{2} \end{bmatrix} - \begin{bmatrix} (3-2(0))^{-1} - (0)^{2} \end{bmatrix} $ = $(-1/2)^{-1/4} - (1/3 - 0)^{-1/2} = (-1/2)^{-1/4} + (-1/2)^{-1/4} = (-1/2)^{-1/4} = (-1/2$	and the accuracy mark cannot be awarded. The method mark is awarded. Mark for (c) = 1 out of 2
$= \frac{1}{4} - \frac{1}{12}$ = $\frac{1}{6}$ units ² . 5	Total mark awarded = 8 out of 10

In part (a), the candidate could have integrated x with the correct coefficient.

Example Candidate Response – middle

Examiner comments

Example Candidate Response – middle, continued	Examiner comments
(b) Find, by calculation, the x-coordinate of M. [2]	
$\frac{dy = 8(3-2x)^{3}-1}{0 = 2}$ $\frac{2}{(2-2x)^{4}} \xrightarrow{-\frac{1}{2}}{1}$ $\frac{3-2x > 0}{2}$	2 The candidate makes insufficient progress in either setting $y = 0$ or $\frac{dy}{dx} = 0$ and so is awarded no marks.
(c) Find the area of the shaded region bounded by the curve and the coordinate axes. [2] Area = $y \int_{2}^{\sqrt{3}} \frac{1}{2} \int_{2}^{\sqrt{3}} $	 3 The candidate uses an invalid method and so no marks are awarded. Mark for (c) = 0 out of 2 Total mark awarded = 6 out of 10

How the candidate could have improved their answer • The candidate could have solved $\frac{dy}{dx} = 0$ in part (b).

- The candidate could have used their integral from part (a) to find the area in part (c). •

Example Candidate Response – low

Examiner comments

Example Candidate Response – Iow, continued	Examiner comments
(b) Find, by calculation, the x-coordinate of M . [2] $M \cdot (X, G) = \frac{2}{(3-230)^2} + \frac{2}{9-MN} + \frac{2}{9} + \frac{2}{3}$ $M \cdot (X, G) = \frac{2}{(3-230)^2} + \frac{2}{9-MN} + \frac{2}{9} + \frac{2}{3}$ $M \cdot (X, G) = \frac{2}{3}$ (c) Find the area of the shaded region bounded by the curve and the coordinate axes. [2]	3 The candidate displays no working when solving the equation. Without working, it is not possible to determine whether the candidate has solved the equation with a calculator and so no marks are awarded. Mark for (b) = 0 out of 2
$ \frac{1}{2} 1$	 The candidate has not substituted any limits so no marks are awarded. Mark for (c) = 0 out of 2 Total mark awarded = 3 out of 10

How the candidate could have improved

- The candidate could have remembered to differentiate and integrate the '-x' term.
- The candidate needed to show their working for solving the equation in part (b). •
- The candidate could have substituted limits in part (c).

- Forgetting to differentiate and integrate the '-x' term. •
- Differentiating and integrating the '-x' term incorrectly. •
- •
- Forgetting to multiply by '-2' twice when differentiating $\frac{2}{(3-2x)^2}$. Forgetting to divide by '-2' when integrating $\frac{2}{(3-2x)^2}$. •
- Setting y = 0 in part (b) rather than the easier $\frac{dy}{dx} = 0$.
- Not showing their method of solving the equations in part (b).
- Assuming that when 0 is substituted as a limit in part (c), the value of the expression is 0.
- Not showing both limits substituted in part (c). •

Example Candidate Response – high, continued	Examiner comments
Functions f, g and h are defined for $x \in \mathbb{R}$ by	
$f(x) = 3\cos 2x + 2,$ g(x) = f(2x) + 4, $h(x) = 2f(x + \frac{1}{2}\pi).$	· .
(d) Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = g(x)$. [2]	2]
Stretch on y axis with scale 4 factor 1 followed by 2 translation with 5 vector (2)	 The candidate uses correct terminology but refers to the wrong axis. A correct response. The candidate uses best practice: a column vector to describe the magnitude of the translation. Mark for (d) = 1 out of 2
(e) Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = h(x)$. [2]	The candidate's translation is correct, with correct terminology for the stretch but, again, the axis
$translation with vector (-1/2 \pi)$	is awarded.
followed by stretch on x-axis	
with scale factor 2	Total mark awarded = 9 out of 11

- The candidate could have improved their sketch by making it more curved, more obviously symmetrical about $x = \frac{\pi}{2}$, and by showing that it levelled off at x = 0.
- The candidate could have described the stretches with the correct axes in parts (d) and (e).

Example Candidate Response – middle, continued	Examiner comments
Functions f, g and h are defined for $x \in \mathbb{R}$ by $f(x) = 3 \cos 2x + 2,$ $g(x) = f(2x) + 4,$ $h(x) = 2f(x + \frac{1}{2}\pi).$ (d) Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = g(x)$. [2] $g(x) = -f(ax) + 4$ $= -3\cos a(ax) + a + 4$	
n) vertical translation, vector (0)	4 The candidate provides a correct response with correct use of terminology. Mark for (d) = 2 out of 2
(e) Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = h(x)$. [2] i) Vertical Great Great fraction $\frac{1}{1}$ Horizontal translation, vertor $\begin{pmatrix} -1/2 \\ 0 \end{pmatrix}$.	 5 The candidate gives a correct response except that π is missing, so only 1 mark is awarded. Mark for (e) = 1 out of 2 Total mark awarded = 7 out of 11

- The candidate could have drawn a correct cos graph in part (b).
- The candidate's answer to part (e) would have been correct if they had included the π .

Example Candidate	Response – Iow, continued	Examiner comments
Functions f, g and h are define	ed for $x \in \mathbb{R}$ by	
	$f(x) = 3\cos 2x + 2,$	
	g(x) = f(2x) + 4,	
	$h(x) = 2f\left(x + \frac{1}{2}\pi\right).$	
(d) Describe fully a sequenc	the of transformations that maps the graph of $y = f(x)$ on to $y = g(x)$. [2]	
Stretch by 1/2	4	4 The candidate does not
V		give the direction of the stretch so no marks are
•••••••••••••••••••••••••••••••••••••••		awarded, similarly for the
•••••		stretch in part (e).
·	· · · ·	Mark for $(d) = 0$ out of 2
•••••••••••••••••••••••••••••••••••••••		
		5 A column vector is better
•••••••		practice for describing a
(a) Decerite fully is common		can be awarded a mark
(e) Describe fully a sequenc	the of transformations that maps the graph of $y = I(x)$ on to $y = h(x)$. [2]	because it did mention
Shetch by Fac	Ger 2	'along the x-axis'.
-		(u) = 1 out of 2
Towner lation 10	If her The dlose the a and 5	Total mark awarded =
rans loui on lo	1 vy 12 away me 2-920	5 out of 11

- The candidate could have attempted part (c).
- The candidate needed to describe the directions of the stretches in parts (d) and (e).
- The candidate could have used best practice, describing the translations with column vectors.

- Substituting x = 0 and $x = \pi$ into the equation in part (a) and obtaining a greatest and least value of 5.
- In part (b), drawing a curve that resembled a parabola (i.e. it didn't level off at either end).
- Plotting points and joining them up instead of sketching a smooth cosine curve.
- Poor descriptions of the transformations in parts (d) and (e) using words such as move, up, down, left, and right. Correct descriptions use the words 'stretch' and 'translation' and best practice uses column vectors to describe translations.

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554 e: info@cambridgeinternational.org www.cambridgeinternational.org