

Example Candidate Responses – Paper 4 Cambridge IGCSE[™] / IGCSE (9-1) Chemistry 0620 / 0971

For examination from 2021

Cambridge University Press & Assessment 2022 v1

Cambridge Assessment International Education is part of the Cambridge University Press & Assessment. Cambridge University Press & Assessment is a department of the University of Cambridge.

Cambridge University Press & Assessment retains the copyright on all its publications. Registered centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within a centre.

Contents

ntroduction	4
Question 1	6
Example Candidate Response – high	6
Example Candidate Response – middle	7
Example Candidate Response – low	8
Question 2	9
Example Candidate Response – high	9
Example Candidate Response – middle	11
Example Candidate Response – low	13
Question 3	15
Example Candidate Response – high	15
Example Candidate Response – middle	16
Example Candidate Response – low	17
Question 4	18
Example Candidate Response – high	18
Example Candidate Response – middle	19
Example Candidate Response – low	20
Question 5	21
Example Candidate Response – high	21
Example Candidate Response – middle	23
Example Candidate Response – low	26
Question 6	29
Example Candidate Response – high	29
Example Candidate Response – middle	30
Example Candidate Response – low	31

Introduction

The main aim of this booklet is to exemplify standards for those teaching Cambridge IGCSE[™] / IGCSE (9-1) Chemistry 0620 / 0971, and to show how different levels of candidates' performance (high, middle and low) relate to the subject's curriculum and assessment objectives.

In this booklet, candidate responses have been chosen from the June 2021 series to exemplify a range of answers.

For each question, the response is annotated with a clear explanation of where and why marks were awarded or omitted. This is followed by examiner comments on how the answer could have been improved. In this way, it is possible for you to understand what candidates have done to gain their marks and what they could do to improve their answers. There is also a list of common mistakes candidates made in their answers for each question.

This document provides illustrative examples of candidate work with examiner commentary. These help teachers to assess the standard required to achieve marks beyond the guidance of the mark scheme. Therefore, in some circumstances, such as where exact answers are required, there will not be much comment

The questions and mark schemes used here are available to download from the School Support Hub. These files are:

0620 June 2021 Question Paper 42 0620 June 2021 Mark Scheme 42

Past exam resources and other teaching and learning resources are available on the School Support Hub:

www.cambridgeinternational.org/support

How to use this booklet

This booklet goes through the paper one question at a time, showing you the high-, middle- and low-level response for each question. The candidate answers are set in a table. In the left-hand column are the candidate answers, and in the right-hand column are the examiner comments.

Example Candidate Response – low, continued	Exan
 (c) Aqueous silver nitrate is a colourless solution containing Ag¹(aq) ions. (i) Describe what is seen when aqueous silver nitrate is added to aqueous sodium iodide, NaI(aq). 	5 He correct, Mark fo 6 The attempt the only the proc (aq), rai state, (s Mark fo
name of gas	(d) eluc respons
[2] Answers are by real candidates in exam conditions. These show you the types of answers for each level. Discuss and analyse the answers with your learners in the classroom to improve their skills.	Exami alongsid explain v were aw to inter Cambrid belo your

Examiner comments

5 Here, 'white' alone, even if correct, is not awarded credit. Mark for (c)(i) = 0 out of 1

6 The candidate makes a good attempt at an ionic equation, the only mistake being to give the product an aqueous state, (aq), rather than the correct solid state, (s).

Mark for (c)(ii) = 2 out of 3

The test for nitrate ions in
 (d) eludes this candidate and the responses given gained no credit.

xaminer comments are

alongside the answers. These explain where and why marks were awarded. This helps you to interpret the standard of Cambridge exams so you can help your learners to refine their exam technique.

How the candidate could have improved their answer

(c)(i) Required a description. Candidates should be informed that descriptions of observations often need two words. In this case, the first word is a colour (or colourless), and the second word is the state (solid, liquid, gas, solution, precipitate etc).

This section explains how the candidate could have improved each answer. This helps you to interpret the standard of Cambridge exams and helps your learners to refine their exam technique.

Common mistakes candidates made in this question

- (c)(i) Candidates' descriptions often did not include both a colour (or colourless) and a state (solid, liquid, gas, solution, precipitate, etc).
- (c)(ii) Candidates should be aware that any precipitation reaction involves $(aq) + (aq) \rightarrow (s)$ as state symbols.

Often candidates were not awarded marks because they misread or misinterpreted the questions.

Lists the common mistakes candidates made in answering each question. This will help your learners to avoid these mistakes and give them the best chance of achieving the available marks.

Question 1

Example Candidate Response – high	Examiner comments
1 The symbols of the elements of Period 3 of the Periodic Table are shown.	
Answer the following questions about these elements. Each element may be used once, more than once or not at all. Write the symbol of an element which: (a) is malleable 1 Na [1] (b) has only two electrons in its outermost shell [1]	1 This is a typical response from a high-level candidate. All answers are correct.
 (a) forms an ion with a 2- charge [1] 	
(e) is extracted from an ore called bauxite A1 [1]	
(f) does not form an oxide	
(g) forms an oxide with a macromolecular structure	Mark for (a) = 1 out of 1 Mark for (b) = 1 out of 1 Mark for (c) = 1 out of 1
(h) forms an amphoteric oxide	Mark for (d) = 1 out of 1 Mark for (e) = 1 out of 1 Mark for (f) = 1 out of 1
(i) exists as diatomic molecules	Mark for (g) = 1 out of 1 Mark for (h) = 1 out of 1 Mark for (i) = 1 out of 1 Mark for (i) = 1 out of 1
() [1] [Total: 10]	Total mark awarded = 10 out of 10

How the candidate could have improved their answer

Sub-questions in this introduction question were designed to have increasing difficulty. High-level candidates would be expected to gain maximum or near maximum marks.

Example Candidate Response – middle

1	The	symbols of the ele	ments	of Pe	rioc	d 3 of the	e Peri	odic T	able a	re sh	vn.	
			Na	Mg	A	Al Si	Р	s	Cl	Ąr		
	Ans Eac	wer the following q h element may be	uestio used o	ns abo once, i	out mor	these el re than o	emen Ince o	ts. r not i	at all.			
	Ŵri	te the symbol of an	eleme	ent wh	ich:	:					1	1 This is a typical response from
	(a)	is malleable									•	a middle-level candidate. The first
		Na								•••••••	[1]	three sub-questions are correctly
	(b)	has only two elect	rons ir	n its ou	uter	most sh	ell					Si for S in (d); assuming P forms a
		Mq										macromolecular structure in (g), and
	(c)	forms an oxide wh	ich lea	ads to	aci	id rain						that Na is amphoteric in (h) , which
	. ,	S									· · · · · · · · · · · · · · · · · · ·	of the elements in Period 3. The
	(d)	forms an ion with a	2 – cl	harae							1,1	candidate has not responded to (i).
	(4)	 a; 	r2- 0	arge							. [4]	
	(-)							•••••••		••••		
	(e)	A I	in ore	called	i ba	iuxite			· .			
		<i>H</i> 1		••••••	•••••			••••••		•••••		
	(f)	does not form an	oxide									
		Ar			•••••			••••••		•••••	[1]	
	(g)	forms an oxide wit	h a m	acrom	ole	cular str	ucture	•				Mark for (a) = 1 out of 1
		Р										Mark for (b) = 1 out of 1 Mark for (c) = 1 out of 1
	(h)	forms an amphote	ric oxi	de								Mark for (d) = 0 out of 1
	(-7											Mark for (e) = 1 out of 1
						••••••	•••••	••••••	••••••	•••••	[1]	Mark for $(f) = 1$ out of 1
	(i)	exists as diatomic	molec	ules								Mark for $(g) = 0$ out of 1
		••••••									[1].	Mark for $(h) = 0$ out of 1
	<i>(</i> i)	forme a hinany oor	nnouin	d with	hu	dragon f	hat in	o otro	n a aai	d	<i>"</i> -	Mark for (i) = 0 out of 1
	U)		npoun		ыця	uugent	andt i S	a ຣແ C	ng ác	u.		Mark for $(j) = 1$ out of 1
		<u>L1</u>			••••		•••••				[1]	Total mark awardod =
											[Total: 10]	6 out of 10

How the candidate could have improved their answer

Candidates should be encouraged not to leave blanks, as in (i), as the answer to this sub-question must be one of the eight elements given in the table at the start of Question 1.

Example	Cond	id ata	Paal		
				001158-	

1	The	e symbols of the elements of Period 3 of the Periodic Table are shown. 2,8.1 + 3,8.2 + 2,8.3 + 2,8.4 + 28.5 + 2,8.6 + 3,8.7 + 28.5 + 8.5 + 10.5 +
	Ans Eac	wer the following questions about these elements. In element may be used once, more than once or not at all.
	Wri	te the symbol of an element which:
	(a).	is malleable
		. <u></u>
	(b)	has only two electrons in its outermost shell
	·(c)	forms an oxide which leads to acid rain
	• •	Ar [1]
	(4)	forms on ion with a 2 _ charge
	(u)	
	(-)	[1]
	(e)	Is extracted from an ore called bauxite
	(f)	does not form an oxide
	(g)	forms an oxide with a macromolecular structure
		<i>Cl</i>
	(h)	forms an amphoteric oxide
	(i)	exists as diatomic molecules
		A1
	(j)	forms a binary compound with hydrogen that is a strong acid.
		P. Mg. [1]
		v ITotal: 101

Examiner comments

This is a typical response from a low-level candidate. The candidate correctly answers (a),
(b) and (d) only. It should be noted that the candidate provides two answers to (j). In this example, both answers are incorrect. However, the candidate would not be awarded the mark even if one of the answers is correct as an incorrect response has been provided.

Mark for (a) = 1 out of 1 Mark for (b) = 1 out of 1 Mark for (c) = 0 out of 1 Mark for (d) = 1 out of 1 Mark for (e) = 0 out of 1 Mark for (f) = 0 out of 1 Mark for (g) = 0 out of 1 Mark for (h) = 0 out of 1
Mark for (i) = 0 out of 1 Mark for (j) = 1 out of 1
Total mark awarded = 4 out of 10

How the candidate could have improved their answer

Candidates need to be advised that if one answer is required, only one answer should be given. Incorrect responses are likely to contradict any correct responses and result in 0 marks being awarded.

Common mistakes candidates made in this question

The two types of common mistake were leaving parts of the question blank (when the answer had to be one of the eight elements given at the beginning of the question) or providing two answers when only one was asked for.

Example Candidate Response – high

Question 2

2	Silv	/er ha	as an atomic num	ber of 47.				
	(a)	Nat	urally occurring at	oms of silver ar	e ¹⁰⁷ Ag and ¹⁰	°Ag.		
		(i)	State the name of State the name of State the name of State of Sta	jiven to atoms o ກະນາ	of the same el	ement with d	ifferent nucleon numbers.	
		(ii)	Complete the tak and ion of silver	ble to show the shown.	number of pro	otons, neutro	ns and electrons in each atom	
			. [¹⁰⁷ Ag	¹⁰⁹ Ag⁺		
				protons	47	47		
	'			neutrons	60	62		
				electrons	47	46		
		(111)	Complete this de Relative atomic of an element o	finition of relativ mass is the . n a scale when units.	ve atomic mas atomi <i>c</i> re the	ss. 1 mass Abon	of naturally occurring atoms atom has a mass of exactly [3]	
		(iv)	A sample of silve	er has a relative	atomic mass	of 108.0.		
	(b)	Silv	Deduce the percent of	entage of ¹⁰⁷ Ag	present in this	s sample of s	iliver. [1] h an acid.	
		Wri	te the formula of t 抑化 月	he acid which re Υθ-3	eacts with silv	er oxide to fo	orm silver nitrate. [1]	

Examiner comments

This candidate is unaware that the missing first word is 'average'. 'Atomic' was a typical incorrect response. The atom upon which the scale is based is a 'carbon-12' atom. 'Carbon' is too vague as this could have been a carbon-14 atom. However, like most high-level candidates, this candidate is aware that the mass of this carbon atom is '12' units. Mark for (a)(i) = 1 out of 1

Mark for (a)(ii) = 3 out of 3 Mark for (a)(iii) = 1 out of 3 Mark for (a)(iv) = 1 out of 1 Mark for (b) = 1 out of 1

Example Candidate Response – high, continued	Examiner comments
(c) Aqueous silver nitrate is a colourless solution containing Ag*(aq) ions.	
 Describe what is seen when aqueous silver nitrate is added to aqueous sodium iodide, NaI(aq). 	
A pole yellow precipitate or solid produced [1]	
(ii) Write the ionic equation for the reaction between aqueous silver nitrate and aqueous sodium iodide. Include state symbols.	
$A_{q}^{\dagger}(a_{q}) + I^{\dagger}(a_{q}) \longrightarrow A_{q}I(s)$ [3]	
(d) In the positive test for aqueous nitrate ions, aqueous sodium hydroxide and one other substance are warmed with the nitrate ions.	
Name this other substance and the gas formed.	
name of substanceÁluminium.	
name of gasຊາທາງແກ່ເຈ	
(e) When silver nitrate is exposed to sunlight, silver is formed.	
Name the type of reaction which needs light to make it happen.	
Anotochemican ceaction Milling ponsition photochemical reaction [1]	
(f) Members of one homologous series only react with chlorine in the presence of sunlight.	
(i) Name a member of this homologous series.	
Ethane [1]	Mark for (c)(i) = 1 out of 1
(ii) Name two products that form when the compound in (i) reacts with chlorine.	Mark for (c)(ii) = 3 out of 3 Mark for (d) = 2 out of 2
1. 14 Malasomatinas 1- chloroethare	Mark for (e) = 1 out of 1
2 Hudman Chloride.	Mark for $(f)(i) = 1$ out of 1
[2]	Mark for $(f)(II) = 1$ out of 2
[Total: 19]	Total mark awarded = 16 out of 19

High-level candidates performed well on this question with only (a)(iii) proving difficult.

2 Silver has an atomic number of 47.

Example Candidate Response – middle

/i\				
(1)	State the name given to atoms o	f the same el	ement with differe	t nucleon numbers.
	150tope			
(ii)	Complete the table to show the and ion of silver shown.	number of pr	otons, neutrons a	l electrons in each atom
		¹⁰⁷ Ag	¹⁰⁹ 4g ⁺	
	protons	47.	u].	
	neutrons	60	数62	Mark for $(a)(i) = 1$ out of 1
	electrons	u7.	46.	Mark for $(a)(ii) = 3$ out of 3
	L	1		^[3] 1 The candidate correctly
(iii)	Complete this definition of relativ	e atomic ma	sś. 💶	identifies the atom upon which
	Relative atomic mass is the .	relatin	ಧಿ mass of ı	turally occurring atoms the scale is based, but their other
	of an element on a scale when	e the		has a mass of exactly Mark for (a)(iii) = 1 out of 3
	60) ×1023			
				[3]
(5.4)	A comple of eilver has a relative	otomio mass	of 108 0	2 The percentage is incorrect.
11101	A sample of silver has a relative	atomic mass	01 100.0.	Mark for $(a)(iv) = 0$ out of 1
()				
()	Deduce the percentage of ¹⁰⁷ Ag	present in thi	s sample of silver	
()	Deduce the percentage of ¹⁰⁷ Ag	present in thi	s sample of silver	
b) Silv	Deduce the percentage of ¹⁰⁷ Ag	present in thi	s sample of silver	
b) Silv	Deduce the percentage of ¹⁰⁷ Ag <u>9,9,07%</u> rer nitrate is a salt of silver made l te the formula of the acid which re	present in thi by reacting si eacts with silv	s sample of silver	
b) Silv Writ	Deduce the percentage of ¹⁰⁷ Ag 9, 9, -7, 4 rer nitrate is a salt of silver made l te the formula of the acid which re $\Lambda_{-}, \Omega_{-} \rightarrow 1.1162$	present in thi	is sample of silver liver oxide with an ver oxide to form s	
b) Silv Wri	Deduce the percentage of 107 Ag 9.9.57% rer nitrate is a salt of silver made l te the formula of the acid which re Ag ₃ O+2,HM	present in thi	s sample of silver lver oxide with an ver oxide to form s 	cid. ver nitrate. H_2Q [1]
b) Silv Wri	Deduce the percentage of 107 Ag 9.9.7% rer nitrate is a salt of silver made l te the formula of the acid which re $A_{32}O$ $+3.1-1M_{3}$	present in thi by reacting since the site of the sector s_{1} and s_{2}	is sample of silver liver oxide with an ver oxide to form s $\therefore Ag.NO_{2}$	cid. ver nitrate. H_2Q [1] 3 Instead of simply giving the formula for the acid which produce
b) Silv Writ	Deduce the percentage of 107 Ag 9.9.07% rer nitrate is a salt of silver made l te the formula of the acid which re Ag ₃ O	present in thi	is sample of silver liver oxide with an ver oxide to form s 2 , Ag, $M0_{2}$	
b) Silv Wri	Deduce the percentage of ¹⁰⁷ Ag <u>9.9.07%</u> rer nitrate is a salt of silver made l te the formula of the acid which re <u>Aga</u> Q+3.H.M.	present in thi by reacting sine eacts with silv 0_3	is sample of silver lver oxide with an ver oxide to form s Ag_NO_3	cid. ver nitrate. $H_2\Omega$ [1] 3 Instead of simply giving the formula for the acid which product silver nitrate from silver oxide, the candidate writes an equation
b) Silv Wri	Deduce the percentage of ¹⁰⁷ Ag <u>9.9.7%</u> rer nitrate is a salt of silver made l te the formula of the acid which re <u>Agy</u> Q+2, H.M.	present in thi	s sample of silver lver oxide with an ver oxide to form s 	cid. ver nitrate. <u>HaQ</u> [1] 3 Instead of simply giving the formula for the acid which produc silver nitrate from silver oxide, the candidate writes an equation Fortunately the formula HNO
b) Silv Wri	Deduce the percentage of ¹⁰⁷ Ag <u>9.9.7%</u> rer nitrate is a salt of silver made l te the formula of the acid which re Ag ₂ O+3.1-1M	present in thi	s sample of silver lver oxide with an ver oxide to form s 	cid. ver nitrate. H_2O [1] 3 Instead of simply giving the formula for the acid which product silver nitrate from silver oxide, the candidate writes an equation Fortunately, the formula HNO ₃ is seen as a reactant so credit is
b) Silv Wri	Deduce the percentage of ¹⁰⁷ Ag	present in thi	is sample of silver liver oxide with an ver oxide to form s 2 , Ag, $M0_3$	[1] cid. ver nitrate. $H_{2}O$ [1] 3 Instead of simply giving the formula for the acid which produce silver nitrate from silver oxide, the candidate writes an equation Fortunately, the formula HNO ₃ is seen as a reactant so credit is given.

Examiner comments

Example Candidate Response – middle, continued	Examiner comments
 (c) Aqueous silver nitrate is a colourless solution containing Ag¹(aq).ions. ¹ J (i) Describe what is seen when aqueous silver nitrate is added to aqueous sodium iodide. <u>NaI(aq).</u> <u>While precipited precipitation</u> [1] (ii) Write the ionic equation for the reaction between aqueous silver nitrate and aqueous sodium iodide. Include state symbols. <u>AqUescaq + Mailcaq</u> <u>Mailcaq</u> <u>Mailcaq</u> [3] (d) In the positive test for aqueous nitrate ions, aqueous sodium hydroxide and one other substance are warmed with the nitrate ions. <u>NaOH.+.</u> (HWB → Wb. 	The precipitation reactions of halides are not known by the candidate in (c). The candidate opts for 'white' instead of 'yellow' as the colour of the precipitate in (c)(i). Mark for (c)(i) = 0 out of 1 Mark for (c)(ii) = 1 out of 3
Name this other substance and the gas formed. name of substance	5 The candidate does not recall the test for notrate ions and the responses given gain no credit. Mark for (d) = 0 out of 2
Name the type of reaction which needs light to make it happen. [1]	6 The candidate unfortunately crosses out the correct answer to (e) and replaces it with an incorrect one. Mark for (e) = 0 out of 1
1	The candidate knows that the homologous series are alkanes and correctly gives the name of an alkane in (f)(i). The names given for the two products are close, but not accurate enough for the marks to be awarded. 'hydrochloride' is not the same as the expected 'hydrogen chloride' and 'chlorine methane' is not the same as 'chloromethane'. Mark for (f)(i) = 1 out of 1 Mark for (f)(ii) = 0 out of 2 Total mark awarded =

- (a)(iv) Like many middle-level candidates, the idea that if the relative atomic mass was 108.0 and there were two isotopes, one weighing 107 and the other 109 units then each must be present in 50% proportions, was not understood.
- (b) The candidate should have just given the formula for the acid which produces silver nitrate from silver oxide.
- (c) Candidates should be aware that any precipitation reaction involves $(aq) + (aq) \rightarrow (s)$ as state symbols.

2 Silver has an atomic number of 47.

Example Candidate Response – low

1 5010	· · · · · · · · ·										
···1· ···/·/·/·	pisomer	,			[1]						
(ii) Complete and ion o	the table to show the silver shown.	number of pr	otons, neutro	ns and electro	ns in each atom						
		¹⁰⁷ Ag	¹⁰⁹ Ag ⁺								
	protons	. 47	47	0							
	neutrons	60	62								
	electrons	47	41 194	-							
	L		· · · · · · · · · · · · · · · · · · ·		[3]						
(iii) Complete	Complete this definition of relative atomic mass.										
Relative	Relative atomic mass is theຝ.tາຊາຜໂຜ mass of naturally occurring atoms										
of an ele	of an element on a scale where thecatbon atom has a mass of exactly										
<u></u>	units.										
					[3]						
(iv) A sample	of silver has a relative	e atomic mass	of 108.0.								
Deduce t	ne percentage of ¹⁰⁷ Ag	ı present in thi	s sample of s	ilver.							
.1.01%.				3	[1]						
	s a salt of silver made	by reacting si	lver oxide wit	h an acid.							
b) Silver nitrate i		roacto with aily	er ovide to fo	orm silver nitrat	э.						
 b) Silver nitrate i Write the form 	ula of the acid which i	CECIS WILLI SHY		· · ·							

Examiner comments

Like many low-level candidates, this candidate writes isomers instead of isotopes for **(a)(i)**. Mark for (a)(i) = 0 out of 1

2 The candidate, although knowing the correct numbers of protons and neutrons, does not appreciate that the number of electrons for a positive ion are one less than an atom. Mark for (a)(ii) = 2 out of 3

Mark for (a)(iii) = 0 out of 3

An answer greater than 100% suggests that the idea of relative atomic mass is not known. Mark for (a)(iv) = 0 out of 1

4 The candidate writes the formula of a salt instead of the formula of an acid. Mark for (b) = 0 out of 1

Example Candidate Response – low, continued	Examiner comments
(c) Aqueous silver nitrate is a colourless solution containing $Ag^{+}(aq)$ ions.	
 (i) Describe what is seen when aqueous silver nitrate is added to aqueous sodium iodide, NaI(aq). 	5 Here, 'white' alone, even if
	Mark for $(c)(i) = 0$ out of 1
 (ii) Write the ionic equation for the reaction between aqueous silver nitrate and aqueous sodium iodide. Include state symbols. 	6 The candidate makes a good
$ \mathbf{E}^{\dagger} \mathbf{I}_{aq} + \mathbf{A}_{q}^{\dagger} \mathbf{A}_{q} \mathbf{A}_{aq} \mathbf{A}_$	only mistake being to give the product an aqueous state, (aq),
 (d) In the positive test for aqueous nitrate ions, aqueous sodium hydroxide and one other substance are warmed with the nitrate ions. Name this other substance and the gas formed. 	rather than the correct solid state, (s). Mark for (c)(ii) = 2 out of 3
name of substance Water Water	
name of gasSteam	test for nitrate ions in (d) and the responses given gain no credit. Mark for (d) = 0 out of 2
(e) When silver nitrate is exposed to sunlight, silver is formed.	
Name the type of reaction which needs light to make it happen.	
(f) Members of one homologous series only react with chlorine in the presence of sunlight.	8 In (e) and (f), the candidate does not know the concepts of
(1) Name a member of this homologous series. 	should have been 'photochemical'. The fictitious 'hydroxide acid' should
(ii) Name two products that form when the compound in (i) reacts with chlorine.	have been a named alkane, such as, 'methane' and the two products
2arbondioxide	chloride' and 'chloromethane', instead of the products of
[Total: 19]	combustion. Mark for (e) = 0 out of 1
	Mark for (f)(i) = 0 out of 1 Mark for (f)(ii) = 0 out of 2
	Total mark awarded = 4 out of 19

(c)(i) This response required a description. Candidates should be informed that descriptions of observations often need two words. In this case, the first word is a colour (or colourless), and the second word is the state (solid, liquid, gas, solution, precipitate, etc).

Common mistakes candidates made in this question

- (c)(i) Candidates' descriptions often did not include both a colour (or colourless) and a state (solid, liquid, gas, solution, precipitate, etc).
- (c)(ii) Candidates should be aware that any precipitation reaction involves $(aq) + (aq) \rightarrow (s)$ as state symbols.

Question 3

How the candidate could have improved their answer

Most high-level candidates successfully answered this question in a similar manner with full working out seen in (b).

Example Candidate Response – middle

Examiner comments

How the candidate could have improved their answer

Careful reading of the question and rereading the answer may have helped this candidate answer the actual question asked in (c).

Example Candidate Response – Iow	Examiner comments
3 Sodium hydrogencarbonate is found in baking powder.	
When sodium hydrogencarbonate is heated it forms three products.	
$2NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2$	
(a) Name the type of reaction that takes place when sodium hydrogencarbonate reacts in this way.	
Neutiosition	about 'thermal decomposition'.
(b) Calculate the volume of carbon dioxide formed at room temperature and pressure when 12.6g of NaHCO ₃ is heated using the following steps:	Mark for $(a) = 0$ out of 1
• determine the mass of one mole of NaHCO ₃ n = VC = (23+1+Clix3) $= \frac{2+6+4}{2} = 62$ • calculate the number of moles of NaHCO ₃ used $M = M \times Ncr$ $= \frac{2}{2} + \frac$	
- 806.4 x 15-6	
 determine the number of moles of carbon dioxide formed CO ₂ 12+16×2 = 44 calculate the volume of carbon dioxide formed at room temperature and pressure. calculate the volume of carbon dioxide formed at room temperature and pressure. (c) Limewater is aqueous calcium hydroxide. Carbon dioxide turns limewater milky because a white precipitate forms. Write the formula of: calcium hydroxideCa.Q₂+H₂.Q→ Qa.Q. ₂+H₂	 2 The candidate attempts to calculate a molar mass but becomes confused and starts to multiply relative atomic masses instead of adding them to give 84. The amendment of 806.4 to 62 suggests that the candidate realises the error, but (perhaps) in haste, miscalculates. The candidate realises that there is a relationship between mass and molar mass, but instead of dividing by molar mass, the candidate multiplies by molar mass. Like most low-level candidates, the idea of molar ratios is not known, and neither is multiplication by 24 to give a volume of gas. Mark for (b) = 0 out of 4 3 Neither formulae is known. Mark for (c) = 0 out of 2
	Total mark awarded = 0 out of 7

Common mistakes candidates made in this question

The most common error was misreading of the question in (b). The first part asked for the mass of **one mole** of NaHCO₃, but many candidates determined the **number of moles** of NaHCO₃ here rather than in the next part.

Question 4

Example Candidate Response – high	Examiner comments
4 A student carries out an electrolysis experiment using the apparatus shown.	
wire	
dilute aqueous sodium chloride	The candidate is awarded full credit for this question. Many high- level candidates got every sub- question correct on this question. Mark for (a) = 1 out of 1
The student uses dilute aqueous sodium chloride.	
(a) State the name given to any solution which undergoes electrolysis. 	
(i) Complete the ionic half-equation for this reaction	
$\frac{4}{100} \text{ OH}^{-1}(\text{ag}) \rightarrow \frac{2H_2 O_1(\underline{k})}{100} + O_2(\underline{q}) + 4e^{-1} $ [2]	
(ii) Explain how the ionic half-equation shows the hydroxide ions are being oxidised.	
Oxidation is loss of electrons and the hydroxide ions last [1] 4 electrons	
(c) Describe what the student observes at the cathode. <u>BIAND</u> produce produced in produced [1] from the production of hydrogicn	
(d) Write the ionic half-equation for the reaction at the cathode. W_{1}^{4} M_{1}^{7} W_{1}^{4} M_{1}^{7} W_{2}^{7} W_{2}^{7} W_{2}^{1} H_{2}^{1} H_{2}^{1} H_{2}^{1} [2]	
(e) The student repeats the experiment using concentrated aqueous sodium chloride.	
(i) Describe what the student observes at:	
• the cathode fres bubbles produced or effervence.	
• the anode	
لاات ونتع (ii) The student added litmus to the solution after the electrolysis of concentrated aqueous	
sodium chioride.	
reason The solution is more basic because sodium hydroxide	Mark for (b)(i) = 2 out of 2 Mark for (b)(ii) = 1 out of 1
is produced. [2]	Mark for (c) = 1 out of 1 Mark for (d) = 2 out of 2
(f) Carbon electrodes are used because they are inert.	Mark for (e)(i) = 2 out of 2 Mark for (e)(ii) = 2 out of 2
State another element that can be used instead of carbon.	Mark for (f) = 1 out of 1
Platinum [1]	
[Total: 12]	Iotal mark awarded = 12 out of 12

Example Candidate Response – middle

4 A student carries out an electrolysis experiment using the apparatus shown.

atore + carbon electrodes contrace dilute aqueous sodium chloride	
The student uses dilute aqueous sodium chloride.	
(a) State the name given to any solution which undergoes electrolysis.	
Electrolyte	[1]
(b) Hydroxide jons are discharged at the anode.	
(i) Complete the ionic half-equation for this reaction.	
$\dots \mathcal{P} OH^{-}(aq) \rightarrow \dots \mathcal{H}_{2} \dots \mathcal{L}_{3} \dots + O_{2}(g) + 4e^{-1}$	[2]
(ii) Explain how the ionic half-equation shows the hydroxide ions are being oxidised.	r .4
Loss in electrons	[1]
	•
(c) Describe what the student observes at the cathode. Sochram Will form at the cathode ChioNale fors Chiorine (d) Write the ionic half-equation for the reaction at the cathode.	[1]
$2CI^+ + Ae^- \rightarrow CI_2$	[2]
e) The student repeats the experiment using concentrated aqueous sodium chloride.	
(i) Describe what the student observes at:	
• the cathode this note one Chlonne	3
 the anode	
	[2]
 (ii) The student added litmus to the solution after the electrolysis of concentrated ac sodium chloride 	lueous
State the colour seen in the solution. Give a reason for your answer.	
colour of solution Red Blue	
reason GotWyon is busic	
	[2]
f) Carbon electrodes are used because they are inert.	
State another element that can be used instead of carbon.	
Platinum	[1]
от	tal: 12]

Mark for (a) = 1 out of 1 Mark for (b)(i) = 0 out of 2 Mark for (b)(ii) = 1 out of 1

Examiner comments

The candidate states the name of the product formed, rather than a description (i.e. state; colour) of what they would observe, so cannot credit marks for their answer. Mark for (c) = 0 out of 1

In (d), the candidate realises that it is a positive ion which gains an electron at the cathode, so credit is awarded for indicating this, albeit, using an incorrect positive ion. Mark for (d) = 1 out of 2

3 The candidate states the name of the product formed, rather than gives a description (i.e. state; colour) of what they would observe, so cannot credit marks for their answer.

Mark for (e)(i) = 0 out of 2

The candidate states the correct colour of the indicator, but although the candidate knows it is the presence of a base, they cannot state the name of the base. Mark for (e)(ii) = 1 out of 2

Mark for (f) = 1 out of 1

Total mark awarded = 5 out of 12

How the candidate could have improved their answer

- (b)(i) The candidate needed to balance the charges for the easier mark followed by balancing atoms for the harder mark.
- (c), (e)(i) The candidate stated the names of the products formed, but needed to give descriptions (i.e. state; colour). When asked what they would 'observe', candidates should state what they would see, not what they know (correctly or not) is being formed. An observation is not the same as drawing a conclusion.

Example Candidate Response – Iow

4 A student carries out an electrolysis experiment using the apparatus shown.

The student uses dilute aqueous sodium chloride. (a) State the name given to any solution which undergoes electrolysis. Magne simm	1 The candidate appears unfamiliar with the electrochemistry part of the syllabus and provides responses which earn no credit. Mark for (a) = 0 out of 1
(b) Hydroxide ions are discharged at the anode.	
(i) Complete the ionic half-equation for this reaction. For $OH^{-1}(a) \rightarrow 2Fe \parallel Free H = 0$ (a) to $4a$	
(ii) Explain how the ionic half-equation shows the hydroxide ions are being oxidised.	
(c) (Describe jubat the student observed of the sectoria	
(c) Describe what the student observes at the cathode.	
(d) Write the ionic half-equation for the reaction at the cathode.	
(e) The student repeats the experiment using concentrated aqueous sodium chloride.	
(i) Describe what the student observes at:	
the cathode	
• the anode	
[2]	
(ii) The student added litmus to the solution after the electrolysis of concentrated aqueous sodium chloride.	
State the colour seen in the solution. Give a reason for your answer.	
colour of solution	Mark for (b)(i) = 0 out of 2 Mark for (b)(ii) = 0 out of 1
reason	Mark for (c) = 0 out of 1
, [2]	Mark for (d) = 0 out of 2 Mark for (e)(i) = 0 out of 2
(f) Carbon electrodes are used because they are inert.	Mark for $(e)(i) = 0$ out of 2
State another element that can be used instead of carbon.	Mark for (f) = 0 out of 1
	Total mark awarded =
. [Total: 12]	0 out of 12

Examiner comments

Common mistakes candidates made in this question

- In ionic half-equations, such as (b)(i), the key point is for candidates to balance charges.
- When describing electrode reactions in which the product is gaseous, 'effervescence' is the term which will earn credit. If the gas is coloured, such as chlorine in (e)(i), then the colour of the gas should be given.

Question 5

(c) The candidate needed to have stated that the forces acted between 'ions' in lithium nitride: The phrase 'electrostatic attraction' was too vague.

Example Candidate Response – middle, continued Examiner comments

(iii) Complete the dot-and-cross diagram to show the electron arrangement in a molecule of $\ensuremath{\mathsf{NF}_{3^{\text{.}}}}$

Use dots for nitrogen electrons and crosses for fluorine electrons.

Show outer electrons only.

(c) Lithium nitride melts at 813°C. Nitrogen trifluoride melts at -206°C.

Explain in terms of attractive forces why lithium nitride has a much higher melting point than nitrogen trifluoride.

In your answer refer to the types of attractive forces between particles and their relative strengths. molecular

Lithium nitride the attrative force sma stronge. They need more 5 energy to broken down, so the melting point high. Lithimus nitragen trifluorde the ionic attrative force small. They need saml need broken to broken down, so the melting point lower. [3]

(d) Ammonium nitrate, NH4NO3, is a compound of nitrogen.

(i) Calculate the percentage by mass of nitrogen in ammonium nitrate.

NO2 (16+ 14+116x2) 14++++14+116x32

st silver nitrate [1]

(e) Ammonia is a base which forms a weakly alkaline solution when dissolved in water.

(i) Define the term base.

 Accept. The base is get. proton
 [1]

 (ii) Suggest the pH of aqueous animonia.
 7

 $PH^{2n} > 7$ [1]

[Total: 20]

4 The candidate recognises that three dot and cross bonds are needed between the N atom and each F atom, and they secure a second mark for completing the octet of electrons on the N atom. The third mark is not awarded because the three pairs of nonbonding electrons on each F atom are missing.

Mark for (b)(iii) = 2 out of 3

5 The candidate gains credit for stating the relative strength of the forces. The candidate attempts to name the particles involved, but unfortunately the names of the particles are applied the wrong way around. Lithium nitride has ions. Nitrogen fluoride has molecules. Mark for (c) = 1 out of 3

The candidate shows partial working, but as the final answer is incorrect, there is no evidence that the bottom line has been calculated correctly. Mark for (d)(i) = 0 out of 2

Mark for (d)(ii) = 0 out of 1 Mark for (d)(iii) = 0 out of 1

The candidate knows bases are 'proton acceptors', but the answer 'ammonia has a pH above 7' does not receive credit as pH 14 is above 7 yet is the pH of a strong alkali. Mark for (e)(i) = 1 out of 1

Mark for (e)(ii) = 0 out of 1

Total mark awarded = 10 out of 20

- (a)(ii) The candidate was awarded full credit. However, although it was expected that three of the electrons in the second shell should have been dots, a full octet of electrons in the second shell was given credit. The candidate was awarded the charge mark as, although '3-' was the expected answer, it was felt the 'e' could be ignored as electrons were the species carrying the negative charges.
- (d)(i) If the candidate had written '= 80' on the bottom line, a mark could be awarded.
- (e)(i) A single integer between 7 and 11 would have secured the mark.

Example Cano	didate R	Response – I	ow	Examiner comments
5 This question is about c	compounds of n	itrogen.		
(a) Nitrogen reacts with	h lithium to form			
(i) Write the chem	nical equation fo			
N42	+Liz-	X LI3N		
(ii) Lithium nitride	is ionically bond	ded.		
Complete the o Show the charge	diagram to show ge on the nitride	w the electronic structure e ion.	of the nitride ion.	
(b) Nitrogen reacts with flu	uorine to form r	\tilde{N}	1 [2]	The candidate is unfamiliar with the correct formula, N2. They do not realise that a complete octet of electrons is needed.
(i) The chemical edu	ation can be re	presented as shown.	·	Mark for $(a)(i) = 0$ out of 2
()) (i) (i) (i) (i) (i) (i) (i) (i) (i)	N≡N +	3 F-F -→ 2 F-N-F	- •	Mark for $(a)(ii) = 0$ out of 2
		F	· · ·	
Some bond energi	ies are shown	in the table.		
	bond	hond onormy in k l/mol	7	
	N≣N	945	33.75	
	F-F	160	5.9	
	N-F	300	9.09	
Calculate the ene following steps:	rgy change fo	r the reaction between	nitrogen and fluorine, using the	
energy taken	in to break bor	ids		
	1. j	x. ,	48.54 KJ	
 energy releas 	ed when bond	s are formed	<mark>2</mark> 13, 4 кл	2 The candidate does not show any working, so it is unclear where these values came from.
é énergy∶chang	e during the re	action.	317 3730 317 3730 kJ/mol [3]	Mark for (b)(i) = 0 out of 3 Mark for (b)(ii) = 1 out of 1
(ii) Use your answer Explain your answ	to (i) to dedu ver.	ce whether this reaction	n is endothermic or exothermic.	
Endoth	Dermi c	because the re	sult is postile	
		v	[1]	

Example Candidate Response – Iow, continued	Examiner comments
 (iii) Complete the dot-and-cross diagram to show the electron arrangement in a molecule of NF₃. Use dots for nitrogen electrons and crosses for fluorine electrons. Show outer electrons only. 	3 The candidate secures the first mark for showing three pairs of dot- and-cross electrons.
 [3] (c) Lithium nitride melts at 813°C. Nitrogen trifluoride melts at -206°C. Explain in terms of attractive forces why lithium nitride has a much higher melting point than nitrogen trifluoride. 	
In your answer refer to the types of attractive forces between particles and their relative strengths. The lithimum initiale melts at 8137, because the Mithing point 4 Learning because the back high mething point 4 and Mithingen trifluoriste have low melting because the [3] (d) Ammonium nitrate, NH4NO3, is a compound of nitrogen. (i) Calculate the percentage by mass of nitrogen in ammonium nitrate.	4 The candidate struggles as no names of particles are given. In other scripts of low-level candidates some were able to make educated guesses that ions and molecules were involved. Mark for (c) = 0 out of 3
percentage by mass of nitrogen =	
 (e) Ammonia is a base which forms a weakly alkaline solution when dissolved in water. (i) Define the term base. (ii) Suggest the pH of aqueous ammonia: 	Mark for (d)(i) = 0 out of 2 Mark for (d)(ii) = 1 out of 1 Mark for (d)(iii) = 0 out of 1 Mark for (e)(i) = 0 out of 1 Mark for (e)(ii) = 1 out of 1 Total mark awarded =

 (b)(iii) Although the candidate secured the first mark for showing three pairs of dot-and-cross electrons, the candidate needed to complete the octet of electrons for the N atom for a second mark. The octets of electrons for each F atom were needed for a third mark.

Common mistakes candidates made in this question

- (b)(ii) The answer is dependent upon the magnitude of the values used in bond breaking/bond making processes. Candidates need to be clear that energy is needed/used/taken in to break bonds and is released/given out. when bonds are made. The ideal response would be, 'The energy **needed** to break bonds is less than the energy **released** when bonds are formed'. Candidates often used phrases which contradicted what they wished to say. Frequently seen examples were phrases such as 'The energy **needed** to break bonds is less than when bonds are formed', which unfortunately suggests that energy is also needed in bond formation.
- (b)(iii) The most common error was to omit non-bonding electrons in either the N atom or, more commonly, the three F atoms. It would help candidates if they represented non-bonding electrons in F as three pairs rather than six individual electrons as this is more correct and easier to count the number of electrons.
- (c) The ideal response would have been, 'The attraction between ions in Li₃N is stronger than the attraction between molecules in NF₃', or the reverse argument. For 'attraction between ions', many candidates wrote 'ionic bonding', which is acceptable. For 'attraction between molecules', many candidates wrote 'intermolecular forces' which is also acceptable. However, many candidates wrote, using the reverse argument, 'The intermolecular forces in NF₃ are weaker than the intermolecular forces in Li₃N' suggesting that L₃N is covalent, which contradicted statements about ionic bonding in Li₃N seen elsewhere in the response.
- (d)(i) Many candidates in their working did not determine a value for the relative molecular mass of NH₄NO₃, which would be acceptable as long as the final answer was correct, but this omission did not allow a working mark if the final answer was incorrect.

Question 6

Example Candidate Response – high Examiner comments 6 Molecules A and B can form condensation polymers. в A HO-OH HOOC -COOH The candidate gains full credit for this question. This is not (a) Each molecule has two identical functional groups. untypical of high-level candidates (i) Name the functional group in B. and many, like this candidate, answers every sub-question abonautre acid correctly. (ii) Draw the part of the structure of the synthetic polymer that would form when two molecules Mark for (a)(i) = 1 out of 1 of A and two molecules of B combine. Show all of the bonds in the linkages. [3] (iii) Name the other product formed when molecules of A and B undergo polymerisation. Water (b) Molecule A is a simple sugar unit which can be made by hydrolysis of complex carbohydrates. (i) Draw part of the complex carbohydrate that could be hydrolysed to make molecules of A. Include one linkage and show all of the bonds in the linkage. 11-0-111 [1] State two sets of conditions which could be used to hydrolyse the complex carbohydrate (ii) to form A. MI of enzumes 01 2 [2] Name the technique used to identify the individual sugar units made by the hydrolysis of a (iiii) complex carbohydrate. Mark for (a)(ii) = 3 out of 3 Chromotographu hromo to arave Mark for (a)(iii) = 1 out of 1 (c) Ethanol can be made from the simple sugar glucose, $C_8H_{12}O_8$. Mark for (b)(i) = 1 out of 1 Mark for (b)(ii) = 2 out of 2 State the name of this process. (i) Mark for (b)(iii) = 1 out of 1 Fermentation [1] Mark for (c)(i) = 1 out of 1 Mark for (c)(ii) = 2 out of 2 (ii) Complete the chemical equation for this reaction. C.H.20. -2(2H, OH +:2002 [2] Total mark awarded = 12 out of 12 [Total: 12]

Example Candidate Response – middle	Examiner comments
6 Molecules A and B can form condensation polymers.	
A B	
но-соон	
(a) Each molecule has two identical functional groups.	
 (i) Name the functional group in B. (arby y log (ii) Draw the part of the structure of the synthetic polymer that would form when two molecules 	full name, 'carboxyl' is a suitable alternative Mark for (a) = 1 out of 1
H - O - $\begin{bmatrix} B \\ - C \\ - $	
[3] (iii) Name the other product formed when molecules of A and B undergo polymerisation.	2 The candidate gains credit for drawing one ester group, and the idea of alternating ester groups along the chain also gains credit.
(b) Molecule A is a simple sugar unit which can be made by hydrolysis of complex carbohydrates.	The candidate does not show continuation bonds at each end and was not awarded the third mark.
(i) Draw part of the complex carbohydrate that could be hydrolysed to make molecules of A.	(a)(ii) = 2 out of 3
Include one linkage and show all of the bonds in the linkage.	Mark for (a)(iii) = 1 out of 1
3 [1]	3 The candidate knows the linkage of a complex carbohydrate in (i), but the rest of the answers to
 (ii) State two sets of conditions which could be used to hydrolyse the complex carbohydrate to form A. 1	(b) indicate a limited knowledge of this area of the syllabus.Mark for (b)(i) = 1 out of 1
2	Mark for (b)(ii) = 0 out of 2
(iii) Name the technique used to identify the individual sugar units made by the hydrolysis of a complex carbohydrate.	Mark for (b)(iii) = 0 out of 1
P ² Greisation [1]	
(c) Ethanol can be made from the simple sugar glucose, $C_6H_{12}O_6$.	
(i) State the name of this process.	
(ii) Complete the chemical equation for this reaction.	4 The candidate correctly states
$C_6H_{12}O_6 \rightarrow 3C_2H_4O_2 $ [2] [Total: 12]	the name of the process in (i), but the does not produce the equation needed in (ii).
CH3ECO-V	$\operatorname{Mark} \operatorname{IOF} (C)(I) = I \operatorname{OUT} \operatorname{OT} I$
Gen -	Mark for (c)(ii) = 0 out of 2
	Total mark awarded = 6 out of 12

Example Candidate Response – Iow	Examiner comments
6 Molecules A and B can form condensation polymers.	
A B	
носоон	
(a) Each molecule has two identical functional groups.	
(i) Name the functional group in B.	
Ethan?] [1]	
(ii) Draw the part of the structure of the synthetic polymer that would form when two molecules of A and two molecules of B combine. Show all of the bonds in the linkages.	
Ha-1222-04 Hour - 100-100 - 100-100-100-100-100-100-100	
[3]	1 The candidate's answer to (i) is incorrect, and they did not attempt to show all the bonds in the
(iii) Name the other product formed when molecules of A and B undergo polymerisation.	linkages in (ii), so no credit could be
Water [1]	awarded. The candidate's answer to (iii) is correct
(b) Molecule A is a simple sugar unit which can be made by hydrolysis of complex carbohydrates.	Mark for (a) = 0 out of 1
(i) Draw part of the complex carbohydrate that could be hydrolysed to make molecules of A.	Mark for $(a)(ii) = 0$ out of 3
Include one linkage and show all of the bonds in the linkage.	Mark for (a)(ii) = 0 out of 3 Mark for (a)(iii) = 1 out of 1
$[-1 - rx - \Box] = C - v + i$	
[1]	
(ii) State two sets of conditions which could be used to hydrolyse the complex carbohydrate 2	a linkage in (i), and knowledge of
to form A.	this part of the syllabus is absent in
$\frac{1}{1-1} = \frac{1}{1-1} = \frac{1}$	parts (ii) and (iii). Mark for (b)(i) = 0 out of 1
2 at. 21.5 . [v. atm	
(iii) Name the technique used to identify the individual sugar units made by the hydrolysis of a	Mark for (b)(ii) = 0 out of 2
PH indicate	
(c) Ethanol can be made from the simple sugar glucose, $C_nH_{12}O_n$.	
(i) State the name of this process.	
(ii) Complete the chemical equation for this reaction.	3 The name of the process is
C.H.O. →(H20 + CH+3C00CH. 121	correct, but the equation in (ii) is
	incorrect. Mark for $(a)(i) = 1$ and of 1
[10(d), 12]	V(a(K))(t) = 1 out of 1
	Mark for (c)(ii) = 0 out of 2
	Total mark awarded = 2 out of 12

Common mistakes candidates made in this question

When drawing part of a polymer chain in (a)(ii), many candidates omitted to show continuation bonds.

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554 e: info@cambridgeinternational.org www.cambridgeinternational.org