ZNOTES // A-LEVEL SERIES

visit www.znotes.org

Updated to 2019-21 Syllabus

CIEAS-LEVEL PHYSICS 9702

SUMMARIZED NOTES ON THE SYLLABUS

Rotating scale (0.01mm

1. General Tips

- If range given e.g. 0 to 20, try to get a measurement from a large spread of the range.
- Record all measurements needed to obtain final value including intermediary steps
- For example, if a length l is derived from $l=l_2-l_1$ then l_1 and l_2 should appear in the table.
- Column labelled with the name of symbol and units

2. Micrometre Screw Gauge

Measures objects up to 0.01mm

- Place object between anvil & spindle
- Rotate thimble until object firmly held by jaws
- Add together value from the main scale and rotating scale

3. Vernier Scale

Measures objects up to 0.1mm

- Place object on the rule
- Push the slide scale to the edge of object.
- The sliding scale is 0.9mm long & is divided into 10 equal divisions.
- Check which line division on sliding scale matches with a line division on the rule
- ullet Subtract the value from the sliding scale (0.09 imes Divisions) by the value from the rule.

4. Systematic and Random Errors

- Systematic error:
 - Constant error in one direction; too big or too small
 - o **Cannot** be eliminated by repeating or averaging
 - o If systematic error small, measurement accurate
 - Accuracy: refers to the degree of agreement between the result of a measurement and the true value of quantity.

• Random error:

- o Random fluctuations or scatter about a true value
- o Can be reduced by repeating and averaging
- o When random error small, measurement precise
- Precision: refers to the degree of agreement of repeated measurements of the same quantity (regardless of whether it is correct or not)

4. Uncertainties

For a quantity $x = (2.0 \pm 0.1)mm$

- Absolute uncertainty = $\Delta x = \pm 0.1 mm$
- Fractional uncertainty = $\frac{\Delta x}{x} = 0.05$
- Percentage uncertainty = $\frac{\Delta x}{x} \times 100\% = 5\%$
- Combining errors:
 - When values **added or subtracted**, add absolute error

If
$$p = \frac{2x+y}{3}$$
 or $p = \frac{2x-y}{3}$, then $\Delta p = \frac{2\Delta x + \Delta y}{3}$

- When values multiplied or divided, add % errors
- When values are powered (e.g. squared), multiply percentage error with power

If
$$r = 2xy^3$$
 or $r = \frac{2x}{y^3}$, then $\frac{\Delta r}{r} = \frac{\Delta x}{x} + \frac{3\Delta y}{y}$

Instrument	Uncertainty
Ruler	0.1 cm
Protractor	2°
Stop watch	Max - Min
Ammeter	2

5. Treatment of Significant Figures

- Actual error: recorded to only 1 significant figure
- Number of decimal places for a calculated quantity is equal to the number of decimal places in the actual error

Quantity	Justification
s.f. of the calculated	To s.f. of measure value
quantity s.f. of measure value	To the precision of the
Sin or incusare value	instrument

• Always give calculated quantity s.f. equal or one less than the measured value

6. Errors in Experiments

6. Errors in Experimen	
Error	Improvement
<u>Water-relate</u>	<u>d experiment</u>
Hard to see surface due to refraction/meniscus effect	Use coloured liquid
Labels get wet/ink runs	Use waterproof labels/ink
<u>Ball related</u>	<u>experiment</u>
Locating the centre of the	Mark the centre of the ball
ball when reading the rule	with a marker
Inconsistent bounce	Use a flat surface
<u>Fast-moving ob</u>	<u>ject experiment</u>
Difficult to judge when the ball is at e.g. max displacement	Use sensor or record with camera frame by frame
Hard to see when an object	Use a pressure sensor to
strikes the floor	stop the timer
Difficult to judge end point	Mark distance with lines
Difficulty in deciding the toppling point	Move by increments/hold with newton-meter and tilt until $F = 0$
Releasing object fro	om rest experiment
Difficulty in releasing	Use a remote-controlled
object due to e.g. force	clamp/electromagnet
Rod falls sideways	Keep rod vertical/use guide
<u>Oscillation</u>	<u>experiment</u>
Time taken (T) too short or large uncertainty in T	Time object at max disp. with motion sensor/video & playback in slow motion /time more oscillations
Object doesn't swing freely/ friction between pivot and object	Make hole bigger/bush or bearing idea
Non-uniform oscillation	Turn off the fan (light object)
Oscillations die out quickly	Increase object thickness
Difficult to judge end/start/complete swing	Use a fiducial marker
Retort stand moves	Add weights/clamp
Electricity 6	·
Resistance/current fluctuating	Clean contacts
Voltmeter scale not sensitive enough	Use digital voltmeter
Wires not straight	Tape to ruler/hang weights off end/clamp wire

<u>Force experiment</u>		
Reach max force suddenly	Force sensor w/data logger	
Weights mayo off the nath	Fix cotton loop to rule e.g.	
Weights move off the path	tape, glue	
Pulley experiment		
Masses hit each other	Use larger pulley	
Friction at pulley	Lubricate pulley	
Uncortain starting position	Clamp / electromagnetic	
Uncertain starting position	with steel	
Moment experiment		
Rule hits bench	Project cylinder over bench	
Rule Hits belich	/ elevate apparatus	
Ruler slips on support	Glue support to block	
<u>Magnetism experiment</u>		
Effect of surrounding e.g.	Use various materials to	
glass/magnetic materials	separate magnets & test if	
glass/magnetic materials	material affects results	
Bench/ Ramp (Surface) related experiment		
Some parts of board	Ensure the same section of	
rougher / surface uneven	the board used in each	
	expt.	
Board slips/unstable	Clamp/fix to bench with	
/supporting block topples	tape/blue-tack	
Difficult in pulling in line	use (long) piece of string to	
with the board	connect the newton-meter	
	to the block	
	<u>experiment</u>	
Heat lost through sides	Lag/insulate/polystyrene	
and /or Bottom	container	
The same same should be sale	Use a larger volume of	
Thermometer bulb not	water /use	
completely immersed	thermocouple/small	
Resistor gives heat when	temperature sensor	
switched off/temp. rises	Wait until temp. reaches	
even after switching off	max before reading	
	city experiment	
May not have reached	Time over three markers	
terminal velocity	constant	
	ent experiment	
External light affects		
(LDR)	Conduct expt. in dark room	
Length of tube changes		
when paper added	Make pre-slots in the tube	
Cylinders not aligned	Align on desk/rule	
Difficult to hold together	Tape/clamp together	

7. Errors in Apparatus

Error	Improvement	
	er rule	
Parallax error	Put coloured paper behind/ eye-level perpendicular /extend mark to wood /shadow projection	
Difficult to hold rule still	Mount ruler in stand	
Difficult to measure, since the ruler moves	Clamp rule / ensure the rule is vertical using a set square	
<u>Newton meter</u>		
Difficult to pull Newton meter parallel to ruler/ bench	Ensure force parallel to ruler e.g. use a long string/pulley and weights	
Difficult to judge reading on meter when detached: ruler moves suddenly/ Force = 0 after detachment	Use Newton meter with a 'max hold' facility/video & playback or freeze frame/ use force sensor & logger	
Difficult to zero Newton- meter when horizontal	Use system of pulley & weights/use force sensor with data-logger	
Objects with an unfixed diameter (Circular objects)		
Difficult to measure diameter since the object is flexible/not circular	Use Vernier callipers or micrometre screw gauge to measure average diameter	
Difficult to form perfect sphere/diameter varied	Method to make uniform spheres/discs e.g. moulds	
<u>Protractor</u>		
Protractor "wobbles" / difficult to measure; container curved at the bottom/difficult to line up	Use protractor with horizontal line level to table top/freestanding or clamped protractor	
Parallax error in θ	Use mirror scale	

• General:

o **Error:** two readings not enough

o Improvement: take several readings and plot a graph

© Copyright 2019, 2017, 2015 by ZNotes First edition © 2015, by Saif Asmi & Zubair Junjunia for the 2015 syllabus Second edition © 2017, reformatted by Zubair Junjunia for the 2016-18 syllabus Third edition © 2019, updated by Pugazharasu for the 2019-21 syllabus

This document contain images and excerpts of text from educational resources available on the internet and printed books. If you are the owner of such media, text or visual, utilized in this document and do not accept its usage then we urge you to contact us and we would immediately replace said media.

No part of this document may be copied or re-uploaded to another website without the express, written permission of the copyright owner. Under no conditions may this document be distributed under the name of false author(s) or sold for financial gain; the document is solely meant for educational purposes and it is to remain a property available to all at no cost. It is currently freely available from the website www.znotes.org

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

