

TABLE OF CONTENTS
2

CHAPTER 1

Algorithm Design & Problem Solving

3
CHAPTER 2

Data Representation

4
CHAPTER 3

Programming

5
CHAPTER 4

Software Development

CIE AS-LEVEL COMPUTER SCIENCE//9608

PAGE 2 OF 6

1. ALGORITHM DESIGN & PROBLEM-SOLVING
Algorithm: a solution to a problem expressed as a

sequence of steps

1.1 Identifier Table

• Identifier: name given to a variable in order to call it

• An identifier table depicts information about the

variable, e.g.

• Rules for naming identifiers:

o Must be unique

o Spaces must not be used

o Must begin with a letter of the alphabet

o Consist only of a mixture of letters and digits and the

underscore character ‘_’

o Must not be a ‘reserved’ word – e.g. Print, If, etc.

1.2 Basic Program Operations
• Assignment: an instruction in a program that places a

value into a specified variable

• Sequence: programming statements are executed

consequently, as they appear in the program

• Selection: control structure in which there is a test to

decide if certain instructions are executed

o IF selection: testing 2 possible outcomes

o CASE selection: testing more than 2 outcomes

• Repetition/Iteration: control structure in which a group

of statements is executed repeatedly

o FOR loop: unconditional; executed a set no. of times

o WHILE loop: conditional; executed based on condition

at start of statements

o REPEAT loop: conditional; executed based on

condition at end of statements

1.3 Stepwise Refinement

• Process of developing a modular design by splitting a

problem into smaller sub-tasks, which themselves are

repeatedly split into even smaller sub-tasks until each is

just one element of the final program.

1.4 Program Modules

• This refers to a modular program design

• Subroutines: self-contained section of code, performing

a specific task; part of the main program

• Procedures: performs a specific task, no value returned

to part of code where called

• Functions: performs a specific task, returns a value to

part of code where called

1.5 Logic Statements
Operator Meaning Operator Meaning

< Less than >= Greater/equal

<= Less than/equal == Equal to

> Greater than != Not equal to

1.6 Structure Charts

• Purpose: used in structured programming to arrange

program modules, each module represented by a box

• Tree structure visualizes relationships between modules,

showing data transfer between modules using arrows.

• Example of a top-down design where a problem

(program) is broken into its components.

Rules:

Symbol Description

Process

Represents a programming
module e.g. a calculation

Data Couple

Data being passed from module
to module that needs to be
processed

Flag

Check data sent to start or stop
a process. E.g. check if data sent
in the correct format

Selection

Condition will be checked and
depending on the result,
different modules will be
executed.

Iteration

Implies that module is executed
multiple times

 CIE AS-LEVEL COMPUTER SCIENCE//9608

PAGE 3 OF 6

Example:

1.7 Corrective Maintenance

• White-Box testing: making sample data and running it

through a trace table

• Trace table: technique used to test algorithms; make

sure that no logical errors occur e.g.

1.8 Adaptive Maintenance
• Making amendments to:

o Parameters: due to changes in specification

o Logic: to enhance functionality or more faster or both

o Design: to make it more user friendly

2 DATA REPRESENTATION

2.1 Data Types
Integer:

• Positive or negative number; no fractional part

• Held in pure binary for processing and storage

• Some languages differentiate short/long integers (more

bytes used to store long integers)

Real:

• Number that contains a decimal point

• Referred to as singles and doubles depending upon

number of bytes used to store

Boolean:

• Can store one of only two values; “True” or “False”

• Stored in 1 byte: True = 11111111, False = 00000000

String:

• Combination of alphanumeric characters enclosed in “ ”

• Each character stored in one byte using ASCII code

• Each character stored in two bytes using Unicode

• Max length of a string limited by available memory.

• Incorrect to store dates or numbers as strings

• Phone no. must be stored as string else initial 0 lost

Character:

• A character is any letter, number, punctuation or space

• Takes up a single unit of storage (usually a byte).

Dates:

• Dates are stored as a ‘serial’ number

• Equates to the number of seconds since January 1st,

1904 (thus they also contain the time)

• Usually take 8 bytes of storage

• Displayed as dd/mm/yyyy or mm/dd/yyyy

2.2 ASCII Code

• Uses 1 byte to store a character

• 7 bits available to store data and 8th bit is a check digit

• 27 = 128, therefore 128 different values

• ASCII values can take many forms: numbers, letters

(capitals and lower case are separate), punctuation, non-

printing commands (enter, escape, F1)

2.3 Unicode

• ASCII allows few number of characters; good for English

• Unicode allows others too: Chinese, Greek, Arabic etc.

• Different types of Unicode:

o UTF-8: compatible with ASCII, variable-width encoding

can expand to 16, 24, 32, 40, 42

o UTF-16: 16-bit, variable-width encoding can expand to

32 bits

o UTF-32: 32 bit, fixed-width encoding, each character

exactly 32 bits

2.4 Arrays
1-Dimensianal (1D) Array 2-Dimensional (2D) Array

declared using a single
index, can be represented
as a list

declared using two
indices, can be
represented as a table

• Pseudocode:

o 1-D Array: A[1:n]

o 2-D Array: A[1:m, 1:n]

 CIE AS-LEVEL COMPUTER SCIENCE//9608

PAGE 4 OF 6

• Python:

o Declaring an array: a = []

o Adding to an array: a.append(anything)

o Length of array i.e. number of elements: len(a)

o Printing an element in a 1D array: print(a[x])

o Printing element in a 2D array:

print(a[row][column])

o Printing row in a 2D array: print(a[row])

o Printing column: use for loop and keep adding 1 to the

row and keep column same

2.5 Bubble Sort

• A FOR loop is set to stop the sort

• Setting a variable ‘sorted’ to be ‘true’ at the beginning

• Another FOR loop is set up next in order to search

through the array

• An IF is used to see if the first number of the array is

greater than the second. If true:

o First number stored to variable

o Second number assigned as first number

o Stored variable assigned to second number

o Set ‘sorted’ to ‘false’ causing loop to start again

• The second FOR loop is count based thus will stop after a

specific number of times

• Goes through bigger FOR loop ∴ ‘sorted’ remains ‘true’

• This exits the loop ∴ ending the program

2.6 Linear Search

• A FOR loop goes through the array

• It compares item in question to those in list using an IF:

o If item matches with another then search is stopped

o Also the location where it was found is returned

o If not found it exits the FOR loop

• Then returns fact that item in question is not in the list

2.5 File Handling

• Files are needed to import contents (from a file) saved in

secondary memory into the program, or to save the

output of a program (in a file) into secondary memory,

so that it is available for future use

Pseudocode:

• Opening a file:
OPENFILE <filename> FOR READ/WRITE/APPEND

• Reading a file:
 READFILE <filename>

• Writing a line of text to the file:
 WRITEFILE <filename>, <string>

• Closing a file:
CLOSEFILE

• Testing for end of the file:
EOF()

Python:

• Opening a file
variable = open(“filename”, “mode”)

 Where the mode can be:

Mode Description

r
Opens file for reading only. Pointer placed

at the beginning of the file.

w
Opens a file for writing only. Overwrites file

if file exists or creates new file if it doesn’t

a
Opens a file for appending. Pointer at end of

file if it exists or creates a new file if not

• Reading a file:

o Read all characters
variable.read()

o Read each line and store as list
variable.readlines()

• Writing to a file:

o Write a fixed a sequence of characters to file
variable.write(“Text”)

o Write a list of string to file
variable.write[“line1”, “line2”, “line3”]

3 PROGRAMMING
• Programming is a transferable skill

• Transferable skill: skills developed in one situation

which can be transferred to another situation.

 CIE AS-LEVEL COMPUTER SCIENCE//9608

PAGE 5 OF 6

3.1 Variables

• Declaring a variable:

o Pseudocode: DECLARE <identifier> : <data type>

o Python: no need to declare however must write above

as a comment (#...)

• Assigning variables:

<identifier> ← <value> or <expression>

identifier = value or expression or “string”

3.2 Selections
‘IF’ Structure

IF <condition>

 THEN

 <statement(s)>

 ELSE

 <statement(s)>

ENDIF

if expression:

 statement(s)

else:

 statement(s)

‘CASE’ Structure

CASE OF <identifier>

 <value 1>: <statement>

 <value 2>: <statement>

 ...

 OTHERWISE <statement>

ENDCASE

if expression:

 statement(s)

elif expression:

 statements(s)

...

else:

 statement(s)

3.3 Iterations
Count-controlled Loop

FOR <identifier> ← <val1> TO <val2> STEP <val3>

 <statement(s)>

ENDFOR
for x in range(value1, value2):

 statement(s)

Post condition Loop
REPEAT

 <statement(s)>

UNTIL <condition>

Not possible in Python
Use WHILE and IF

Pre-condition Loop
WHILE <condition>

 <statement(s)>

ENDWHILE

while expression:

 statement(s)

3.4 Built-in Functions
String/character manipulation:

• Uppercase or lowercase all characters
(“string”).upper() (“string”).lower()

• Finding length of a string
len(“string”)

• Converting:

String to Integer Integer to String
int(“string”) str(integer)

Random number generator:
random.randint(a, b)

where a and b defines the range

3.5 Benefits of Procedures and Functions:

• Lines of code can be re-used; don’t have to be repeated

• Can be tested/improved independently of program

• Easy to share procedures/functions with other programs

• Create routines that can be called like built-in command

3.6 Procedure
Procedure: subroutine that performs a specific task

without returning a value

• Procedure without parameters:
PROCEDURE <identifier>

 <statement(s)>

ENDPROCEDURE

def identifier():

 statement(s)

• When a procedure has a parameter, the function can

either pass it by either reference or value

• Pass by value: data copied into procedure so variable

not changed outside procedure
PROCEDURE <identifier> (BYVALUE <param>: <datatype>)

 <statement(s)>

ENDPROCEDURE

def identifier(param):

 statement(s)

• Pass by reference: link to variable provided so variable

changed after going through procedure (not in Python)
PROCEDURE <identifier> (BYREF <param>: <datatype>)

 <statement(s)>

ENDPROCEDURE

• Calling a procedure:
CALL <identifier>() Identifier()

3.7 Function
Function: subroutine that performs a specific task and

returns a value
FUNCTION <identifier> (<parameter>: <data type>)

RETURNS <data type>

 <statement(s)>

ENDFUNCTION

def identifier(param):

 statement(s)
 return [expression]

4 SOFTWARE DEVELOPMENT

4.1 Program Development Cycle

• Analyze problem: define problem, record program

specifications and recognize inputs, process, output & UI

• Design program: develop logic plan, write algorithm in

e.g. pseudocode or flowchart and test solution

• Code program: translate algorithm into high level

language with comments/remarks and produce user

interface with executable processes

 CIE AS-LEVEL COMPUTER SCIENCE//9608

PAGE 6 OF 6

• Test and debug program: test program using test data,

find and correct any errors and ensure results are correct

• Formalize solution: review program code, revise internal

documentation and create end-user documentation

• Maintain program: provide education and support to

end-user, correct any bugs and modify if user requests

4.2 Integrated Development Environment

• A software application that allows the creation of a

program e.g. Python

• Consists of a source code editor, build automation tools,

a debugger

Coding:

• Reserved words are used by it as command prompts

• Listed in the end-user documentation of IDE

• A series of files consisting of preprogrammed-

subroutines may also be provided by the IDE

Initial Error Detection:

• The IDE executes the code & initial error detection

carried out by compiler/interpreter doing the following:

o Syntax/Logic Error: before program is run, an error

message warns the user about this

o Runtime Error: run of the program ends in an error

Debugging:

• Single stepping: traces through each line of code and

steps into procedures. Allows you to view the effect of

each statement on variables

• Breakpoints: set within code; program stops temporarily

to check that it is operating correctly up to that point

• Variable dumps (report window): at specific parts of

program, variable values shown for comparison

4.3 Types of Errors
Syntax errors:

• When source code does not obey rules of the language

• Compiler generates error messages

• Examples:

o Misspell identifier when calling it

o Missing punctuation – colon after if

o Incorrectly using a built-in function

o Argument being made does not match data type

Run-time errors:

• Source code compiles to machine code but fails upon

execution (red lines show up in Python)

• When the program keeps running and you have to kill it

manually

• Examples:

o Division by 0

o Infinite loop – will not produce error message,

program will just not stop until forced to

Logic errors:

• Program works but gives incorrect output

• Examples:

o Out By One – when ‘>’ is used instead of ‘>=’

o Misuse of logic operators

4.4 Testing Strategies
Black box testing:

• Use test data for which results already calculated &

compare result from program with expected results

• Testing only considers input and output and the code is

viewed as being in a ‘black box’

White box testing:

• Examine each line of code for correct logic and accuracy.

• May record value of variables after each line of code

• Every possible condition must be tested

Stub testing:

• Stubs are computer programs that act as temporary

replacement for a called module and give the same

output as the actual product or software.

• Important when code is not completed however must

be tested so modules are replaced by stubs

Key:

Pseudocode

Python

	Cover Practical.pdf (p.1)
	Computer Science - Practical text.pdf (p.2-7)
	Back.pdf (p.8)

