

 A2-LEVEL COMPUTER SCIENCE//9608

PAGE 1 OF 19

TABLE OF CONTENTS
2

CHAPTER 1

Computational Thinking and Problem Solving

8
CHAPTER 2

Algorithm Design Methods

12
CHAPTER 3

Further Programming

17
CHAPTER 4

Software Development

 A2-LEVEL COMPUTER SCIENCE//9608

PAGE 2 OF 19

4.1. COMPUTATIONAL THINKING AND PROBLEM

SOLVING

4.1.1 Abstraction
• Abstraction is the process of modeling a complex system

in an easy to understand way by only including essential

details, using:

o Functions and procedures with suitable parameters

→Imperative Programming

o Classes → Object Orientated Programming

o Facts and rules → declarative programming

o ADTs (Abstract Data Types -see section 4.1.3)

4.1.2 Algorithms
• Serial/Sequential/Linear Search

o All the values are considered in sequence

o Even if an item is not found, all the values will have

been considered

o Best-case scenario: item to be found is at the start of

the list → O(1)

o Worst-case scenario →max number of comparisons,

when item to be found is at the end of the list → O(N)

where N is the number of elements in the list

o Average number of comparisons → N/2

• Binary Search

o Used to search an ordered array

o Much faster than a linear search for arrays of more

than a few items

1. Ordered array divided into 3 parts: middle, lower

and upper

2. Middle item is examined to see if it is equal to

the sought item

3. If not, and the middle value is greater than the

sought item, the upper part of the array is

disregarded

4. The process is repeated for the bottom part

o Worst-case → log2𝑁 + 1 → O(log2𝑁)

o When compared to linear search, whose worst-case

behaviour is N iterations, we see that binary search is

substantially faster as N grows large. For example, to

search a list of one million items takes as many as one

million iterations with linear search, but never more

than twenty iterations with binary search

Recursive Binary Search

Iterative Binary Search

• Insertion Sort

o Items from the input array are copied one at a time to

the output array

o Each new item is inserted into the right place so that

the output array is always in order

o Considerably faster than the bubble sort for a smaller

number of data items

o Iterative process

 A2-LEVEL COMPUTER SCIENCE//9608

PAGE 3 OF 19

• Bubble Sort

o The list is divided into two sublists: sorted and

unsorted.

o The largest element is bubbled from the unsorted list

and moved to the sorted sublist.

o After that, the wall moves one element back,

increasing the number of sorted elements and

decreasing the number of unsorted ones.

o Each time an element moves from the unsorted part

to the sorted part one sort pass is completed.

o Given a list of n elements, bubble sort requires up to

n-1 passes (maximum passes) to sort the data.

• The performance of either sort routine is the best when

the data is already in order and there are a small number

of data items.

• Linked Lists:

o Can be represented as two 1-D arrays -string array for

data values and integer array for pointer values

o Creating a Linked list →Setting values of pointers in

free list and empty data linked list

FOR Index ← 1 TO 49

NameList[Index].Pointer ← Index + 1

ENDFOR

NameList[50].Pointer ← 0

HeadPointer ← 0

FreePointer ← 1

A user-defined record type should first be created to

represent a node’s data and pointer:

o Inserting into a Linked List

o Searching a Linked List

 A2-LEVEL COMPUTER SCIENCE//9608

PAGE 4 OF 19

o Deleting an Item from a Linked List

1. Use a Boolean value to know when an item has

been found and deleted (initially false)

2. Use a pointer (CurrentPointer) to go through each

node’s address

3. If new item is found at the header:

a. Set head pointer to pointer of node at

CurrentPointer

b. Set pointer od node at CurrentPointer to free

pointer

c. Free pointer points to CurrentPointer

d. Set Boolean value to True

4. Otherwise:

a. Search for Item while end of linked list not

reached and Boolean value is false

i. Use a Previous Pointer to keep track of the

node located just before the one deleted

ii. CurrentPointer point’s to next node’s

address

iii. If data in node at CurrentPointer matches

SearchItem

➢ Set pointer of node at PreviousPointer

to pointer of node at CurrentPointer

➢ Set pointer of node at CurrentPointer

to FreePointer

➢ Set FreePointer to CurrentPointer

➢ Boolean value becomes true

5. If Boolean value is false

a. Inform user that item to be deleted has not

been found

• Stacks:

o Stack – an ADT where items can be popped or pushed

from the top of the stack only

o LIFO – Last In First Out data structure

POPPING

PROCEDURE PopFromStack
 IF TopOfStack = -1
 THEN
 OUTPUT “Stack is already empty”
 ELSE
 OUTPUT MyStack[TopOfStack] “is popped”
 TopOfStack ← TopOfStack – 1
 ENDIF
ENDPROCEDURE

PUSHING

PROCEDURE PushToStack
 IF TopOfStack = MaxStackSize
 THEN
 OUTPUT “Stack is full”
 ELSE
 TopOfStack = TopOfStack + 1
 MyStack[TopOfStack] = NewItem
 ENDIF
ENDPROCEDURE

Use of Stacks:

o Interrupt Handling
▪ The contents of the register and the PC are saved

and put on the stack when the interrupt is
detected

▪ The return addresses are saved onto the stack as
well

▪ Retrieve the return addresses and restore the
register contents from the stack once the interrupt
has been serviced

o Evaluating mathematical expressions held in Reverse
Polish Notation

o Procedure Calling
▪ Every time a new call is made, the return address

must be stored
▪ Return addresses are recalled in the order ‘last one

stored will be the first to be recalled’
▪ If too many nested calls then stack overflow

 A2-LEVEL COMPUTER SCIENCE//9608

PAGE 5 OF 19

• Queues:

o Queue – an ADT where new elements are added at the

end of the queue, and elements leave from the start of

the queue

o FIFO – First In First Out Data structure

▪ Creating a Circular Queue:

PROCEDURE Initialise

 Front = 1

 Rear = 6

 NumberInQueue := 0

END PROCEDURE

▪ To add an Element to the Queue:

PROCEDURE EnQueue

IF NumberInQueue == 6

 THEN Write (“Queue overflow”)

 ELSE

 IF Rear == 6

 THEN Rear = 1

 ELSE Rear = Rear + 1

 ENDIF

 Q[Rear] = NewItem

 NumberInQueue =NumberInQueue +1

 ENDIF

ENDPROCEDURE

o The front of the queue is accessed through the pointer

Front.

o To add an element to the queue, the pointers have to

be followed until the node containing the pointer of 0

is reached → the end of the queue, and this pointer is

then changed to point to the new node.

o In some implementations, 2 pointers are kept: 1 to the

front, and 1 to the rear. This saves having to traverse

the whole queue when a new element is to be added.

o To Remove an Item from the Queue
PROCEDURE DeQueue

 IF NumberInQueue == 0

 THEN Write (“Queue empty”)

 ELSE

 NewItem = Q[Front]

 NumberInQueue =

NumberInQueue – 1

 IF Front ==6

 THEN Front = 1

 ELSE

 Front = Front + 1

 ENDIF

 ENDIF

END PROCEDURE

o Items may only be removed from the front of the list and

added to the end of the list

• Binary Trees:

o Dynamic Data structure → can match the size of data

requirement.

o Takes memory from the heap as required and returns

memory as required, following a node deletion

o An ADT consisting of nodes arranged in a hierarchical

fashion, starting with a root node

o Usually implemented using three 1-D arrays

o In a binary tree, a node can have no more than two

descendants.

 A2-LEVEL COMPUTER SCIENCE//9608

PAGE 6 OF 19

o A binary tree node is like a linked list node but with

two pointers, LeftChild and RightChild.

o Binary trees can be used in many ways. One use is to

hold an ordered set of data. In an ordered binary tree

all items to the left of the root will have a smaller key

than those on the right of the root. This applies equally

to all the sub-trees.

o Tree algorithms are invariably recursive.

o To insert data into an ordered tree the following

recursive algorithm can be used:

PROCEDURE insert(Tree, Item)

 IF Tree is empty THEN create new tree with Item as

the root.

 ELSE IF Item < Root

 THEN insert(Left sub-tree of Tree, Item)

 ELSE insert(Right sub-tree of Tree, Item)

 ENDIF

 ENDIF

ENDPROCEDURE

o Another common use of a binary tree is to hold an

algebraic expression, for example:

X + Y * 2

could be stored as:

o Algorithm to search a Binary Tree:

START at Root Node
REPEAT
 IF WantedItem = ThisItem
 THEN Found = TRUE
 ELSE
 IF WantedItem > ThisItem
 THEN Follow Right
Pointer
 ELSE Follow Left Pointer
UNTIL Found or Null Pointer Encountered

• Hash Tables:

o A hash table is a collection of items which are stored in

such a way as to make it easy to find them later.

o Each position of the hash table, often called a slot, can

hold an item and is named by an integer value starting

at 0.

o Given some key, we can apply a hash function to it to

find an index or position that we want to access.

o To find data from the hash table, we need a key to

search for. From this key, we can calculate the hash

code. This tells us where in the data array we need to

start searching.

IsFound == True

SearchAnimal == Data[Current]

SearchAnimal

Current  RightPtr[Current]

IsFound == False

 A2-LEVEL COMPUTER SCIENCE//9608

PAGE 7 OF 19

o Because of the collision resolution of the add

operation, the target data might reside at a location

other than the element referred to by the hash code.

o Therefore, it is necessary to probe the hash table until

an empty hash element is found, and for an exact

match between each data item and the given key. (The

probing stops at an empty element, since it signals the

end of where potential data might have been stored.)

o Consider a situation where 'G' maps to the same hash

code as 'B', and a search is undertaken. The retrieval

algorithm will start looking at data items starting at

that hash code, and continue comparing each hash

item's contents for a match with 'G', until either the

blank element is found, or (if the array is full) the

probing loops back and ends up where the traversal

started.

o Search Algorithm for a Hash Table:

▪ Calculate the hash code for the given search key

▪ Access the hash element

▪ If the hash element is empty, the search has

immediately failed.

▪ Otherwise, check for a match between the search

and data key

▪ If there is a match, return the data.

▪ If there is no match, probe the table until either:

▪ An match is found between the search and data

key

▪ A completely empty hash element is found.

• We must weigh the trade-offs between an algorithm’s

time requirement and its memory requirements.

o For example, an array-based list search function is

O(1), but a linked-list-based list search function is O(n).

o Search for Items in Arrays is much faster, but insert

and delete operations are much easier on a linked-list-

based list implementation.

o However, linked lists require more memory

o When selecting an ADT’s implementations, we must

consider how frequently particular ADT operations

occur in a given application.

o If the problem size is always small, we can probably

ignore an algorithm’s efficiency → use the simplest

algorithm

o Order-of-magnitude(O(x)) analysis focuses on large

problems.

4.1.3 Abstract Data Types (ADTs)
• A collection of data and a set of operations on those

data

▪ Stack

▪ Queue

▪ Linked list

▪ Dictionary / Hash Table

▪ Binary tree

o Algorithms for the ADTs above has been shown in

Section 4.1.2

o Many of the ADTs described are “dynamic” → can

change in size during run time, taking up more or less

memory as required

o Data structures not available as built-in types in a

programming language need to be constructed from

those available data structures which are built-in the

language.

o For example, a linked list is to be implemented using

these array data structures

Define a record type, ListNode, for each node:

TYPE ListNode
 DECLARE Pointer : INTEGER
 DECLARE Name : STRING
ENDTYPE

o Implementation of different ADTs:

▪ Using built-in data types to create an ARRAY
▪ Using classes within subclasses in OOP

 A2-LEVEL COMPUTER SCIENCE//9608

PAGE 8 OF 19

4.1.3 Recursion
• Allows us to define a function that calls itself to solve a

problem by breaking it into simpler cases.

o Important technique used in imperative and

declarative programming

o Uses a stack to store return addresses when compiled

o When a function is defined in terms of itself

o Breaks down a problem into smaller pieces which you

either already know the answer to, or can solve by

applying the same algorithm to each piece, and then

combining the results.

• The essential features of a recursive process:

1. A stopping condition which when met, means that

the routine will not call itself and will start to

“unwind”

2. For input values other than the stopping

condition, the routine must call itself

3. The stopping condition must be reached after a

finite number of calls → base case

1. Infinite recursion – when a function that calls itself

recursively without ever reaching any base case causes a

stack overflow, runtime error.

Advantages Disadvantages

▪ Can produce simpler,

more natural

solutions to a

problem

▪ Less efficient in terms

of computer time and

storage space

▪ A lot more storage

space is used to store

return addresses and

states

▪ Could lead to infinite

recursion

4.2 ALGORITHM DESIGN METHODS

4.2.1 Decision Tables
• Purpose → Determine logical conditions and

consequential actions.

o Decision tables are compact and precise ways of

modelling complicated logic, such as that which you

might use in a computer program.

o They do this by mapping the different states of a

program to an action that a program should perform.

o Decision tables take on the following format:

The four quadrants

Conditions Condition alternatives

Actions Action entries

o The limited-entry decision table is the simplest to

describe. The condition alternatives are simple Boolean

values, and the action entries are check-marks,

representing which of the actions in each column are

to be performed.

o A technical support company writes a decision table to

diagnose printer problems based upon symptoms

described to them over the phone from their clients.

They type the following data into the advice program:

1. Printer does print

2. Red light is flashing

3. Printer is recognized

o The program then uses the decision table to find the

correct actions to perform, namely that of Check /

Replace ink.

 A2-LEVEL COMPUTER SCIENCE//9608

PAGE 9 OF 19

Printer troubleshooter

 Rules

Conditions

Printer does
not print

Y Y Y Y N N N N

A red light is
flashing

Y Y N N Y Y N N

Printer is
unrecognised

Y N Y N Y N Y N

Actions

Check the
power cable

 X

Check the
printer-
computer
cable

X X

Ensure printer
software is
installed

X X X X

Check/replace
ink

X X X X

Check for
paper jam

 X X

4.2.1 Jackson Structured Programming
• JSP is a method for structured programming based on

correspondences between data stream structure and

program structure.

• JSP structures programs and data in terms of sequences,

iterations and selections, and as a consequence it is

applied when designing a program's detailed control

structure, below the level where object-oriented

methods become important

• An operation:

• A sequence of operations:

• An iteration:

• A selection:

• JSP is more simplistic compared to a flowchart

• In a mathematical experiment, two six-sided dice, each

labelled 1, 2, 3, 4, 5 and 6, are thrown a number of

times. Each time they are thrown, the numbers on the

two dice are added together. At the end of the

experiment, a report is made of the number of times

each score, from 2 to 12, has occurred. Additionally, the

results are reported as a percentage of the total number

of throws.This experiment is to be simulated by using a

computer. The number of throws is to be set by the

operator.

A

B C D

A

B *

A

B ° C ° D °

A

 A2-LEVEL COMPUTER SCIENCE//9608

PAGE 10 OF 19

(a) Draw a Jackson diagram to illustrate how the

problem may be broken down. [9]

o Answer in Pseudocode:

Initialise

set totals to zero

generate two numbers

keep running total of throws

process two numbers

add one to total occurrences of score

calculate total score

add one to total occurrences of score

output totals of each total score

output percentages for each total

add one to total occurrences of score

o Answer in JSP:

4.2.3 State Transition Diagrams
• State-transition diagrams are suitable for systems that

operate as finite-state machines – these are systems that

have a fixed number of different states that may change

on an event or input.

• State transition diagrams give a visual representation of

all the states that a system can have, the events such as

inputs or timers that may result in transition between

states, and the transitions between states.

• They may also show the conditions needed for an

event(s) to cause a transition to occur (the guard

condition), and the outputs or actions carried out as the

result of a transition.

• There are different conventions for state-transition

diagrams, but states are normally represented as nodes,

transitions as interconnecting arrows, and events as

labels on the arrows.

• Conditions are normally specified in square brackets

after the event

• The initial state is indicated by an arrow with a black dot.

• Task 3 Paper 4 Pre-release 2015 p42

An intruder detection system is inactive when the

power is switched off. The system is activated when

the power is switched on. When the system senses an

intruder the alarm bell rings. A reset button is

pressed to turn the alarm bell off and return the

system to the active state.

The transition from one state to another is as shown

in the state transition table below.

Current state Event Next state

System inactive Switch power

on

System active

System active Senses intruder Alarm bell rings

System active Switch power

off

System inactive

Alarm bell rings Press reset

button

System active

Alarm bell rings Switch power

off

System inactive

 A2-LEVEL COMPUTER SCIENCE//9608

PAGE 11 OF 19

The example below shows a simple state-transition

diagram for a media player with three buttons: stop,

play and pause. The initial state of the player is

stopped. In each state, only the buttons for the other

states can be pressed (e.g. in play, only the stop and

pause buttons can be pressed).

Pressing the pause button when the player is stopped

does not result in any change to the player.

The event (press pause when state is Stopped) that

does not cause any change in state is indicated by the

circular arrow. A finite-state machine can also be

represented by a state-transition table, which lists all

the states, all possible events, and the resulting state.

The following is the state-transition table for the

diagram above:

Current state Event Next state

Stopped Press play

button

Play

Stopped Press pause

button

Stopped

Play Press stop

button

Stopped

Play Press pause

button

Paused

Paused Press play

button

Play

Paused Press stop

button

Stopped

State-transition diagrams are also useful for showing

the working of algorithms that involve a finite number

of states. The following algorithm is for a three-digit

combination lock where the correct combination to

unlock is ‘367’. The initial state is Locked, each correct

digit changes the state, until the combination unlocks

the lock. An incorrect digit returns the lock to the

original locked state.

A state-transition diagram for the algorithm is shown

below:

The double line around the Unlocked state indicates

that lock halts in this state – this is also known as the

‘accepting state’.

Word/phrase Meaning

Accepting state A state the system

reaches when the input

string is valid

Event Something that can

happen within a system,

such as a timer event, or

an input to the system,

that may trigger a

transition to another

state

Finite state machine

(FSM)

A system that consists of

a fixed set of possible

states with a set of

allowable inputs that

may change the state

and a set of possible

outputs

Guard condition A condition which must

be met for a transition

to occur from one state

to another

 A2-LEVEL COMPUTER SCIENCE//9608

PAGE 12 OF 19

State The value or the position

in which a system is at a

given point

State transition diagram A graphical

representation of a

finite state machine

State transition table A table that shows all

the states of an FSM, all

possible inputs and the

state resulting from

each input

Transition The change from one

state to another state

4.3 FURTHER PROGRAMMING

4.3.1 Programming Paradigms
• A programming paradigm defines the style or model

followed when programming.

o Low-level programming

▪ Machine code (binary – lowest level) or Assembly

language

▪ “Low” refers to the small/non-existent amount of

abstraction between the language and machine

language

▪ Instructions can be converted to machine code

without a compiler or interpreter

▪ The resulting code runs directly on the specific

computer processor, with a small memory

footprint

▪ Programs written in low-level languages tend to be

relatively non-portable – code written for a

Windows processor might not work on a Mac

processor

▪ Simple language, but considered difficult to use,

due to numerous technical details that the

programmer must remember.

o Imperative programming

▪ Uses a sequence of statements to determine how

to reach a certain goal. These statements are said

to change the state of the program as each one is

executed in turn.

▪ Each statement changes the state of the program,

from assigning values to each variable to the final

addition of those values. Using a sequence of five

statements the program is explicitly told how to

add the numbers 5, 10 and 15 together.

o Object-Oriented Programming

▪ An extension of imperative programming.

The focus is on grouping functions and data into

logical classes, and instances of classes called

objects.

o Declarative Programming

▪ Non-procedural and very high level (4th

generation)

▪ Control flow is implicit, not explicit like Imperative

Programming

▪ Programmer states only what the needs to be done

and what the result should look like, not how to

obtain it.

▪ An important feature → backtracking – where a

search goes partially back on itself, if it fails to find

a complete match the first-time round

▪ Goal – a statement we are trying to prove either

true or false, effectively forms a query

▪ Instantiation – giving a value to a variable in a

statement

4.3.2 File Processing
• Records are user-defined data structures

Defining a record structure for a Customer record with

relevant fields (e.g. customer ID) in Python:

 A2-LEVEL COMPUTER SCIENCE//9608

PAGE 13 OF 19

• Files are needed to import contents (from a file) saved in

secondary memory into the program, or to save the

output of a program (in a file) into secondary memory,

so that it is available for future use

Pseudocode:

• Opening a file:

OPENFILE <filename> FOR READ/WRITE/APPEND

• Reading a file:

READFILE <filename>

• Writing a line of text to the file:

WRITEFILE <filename>, <string>

• Closing a file:

CLOSEFILE

• Testing for end of the file:

EOF()

Python:

• Opening a file

variable = open(“filename”, “mode”)

Where the mode can be:

Mode Description

r Opens file for reading only. Pointer placed at

the beginning of the file.

w Opens a file for writing only. Overwrites file if

file exists or creates new file if it doesn’t

a Opens a file for appending. Pointer at end of

file if it exists or creates a new file if not

• Reading a file:

o Read all characters

variable.read()

o Read each line and store as list

variable.readlines()

• Writing to a file:

o Write a fixed a sequence of characters to file

variable.write(“Text”)

o Write a list of string to file

variable.write[“line1”, “line2”, “line3”]

• Using a direct access or Random File allows us to read

records directly. The term ‘random’ is misleading since

records are still read from and written to the file in a

systematic way.

Pseudocode:

• Opening a file, using the RANDOM file mode, where

once the file has been opened, we can read and write as

many times as we would like, in the same session:

OPENFILE <filename> FOR RANDOM

• Move a pointer to the disk address for the record before

reading/writing to a file can occur:

SEEK <filename>, <address>

Each record is given an ‘address’ at which it is to be

written – the record key.

• Write a record to the file:

PUTRECORD <filename>, <identifier>

• Read a record from a file:

GETRECORD <filename>, <identifier>

• Close the file:

CLOSE <filename>

Algorithms for File Processing Operations for Serial and

Sequential Files:

• Display all records:

• Search for a record:

*Special Case: If the records in a sequential file are of a

fixed length, a record can be retrieved using its relative

position in the file. So the start position in the file could

be calculated for the record with the key number 15 for

example. *

• Add a new record – Serial Organisation:

• Add a new record – Sequential Organisation:

*Some file processing tasks, like this one, require the use

of two files, because serial/sequential files can only be

opened for either reading from or writing to in the same

session. *

 A2-LEVEL COMPUTER SCIENCE//9608

PAGE 14 OF 19

• Delete a record:

• Amend an existing record:

Python example of Sequential File Handling:

 A2-LEVEL COMPUTER SCIENCE//9608

PAGE 15 OF 19

Algorithms for File Processing Operations for Random

Files:

• Display all records:

• Add a new record:

Python:

• Delete a record:

• Amend an existing record:

• Search for a record:

Python:

 A2-LEVEL COMPUTER SCIENCE//9608

PAGE 16 OF 19

Python example of Random File Handling:

4.3.3 Exception Handling
• An exception is a runtime error/ fatal error / situation

which causes a program to terminate/crash

• Exception-handling – code which is called when a run-

time error or “exception” occurs to avoid the program

from crashing

• When an exception occurs, we say that it has been

“raised.” You can “handle” the exception that has been

raised by using a try block.

• A corresponding except block “catches” the exception

and prints a message back to the user if an exception

occurs.

e.g.

4.3.4 Use of development tools /

programming environments
• Integrated Development Environment → an application

that provides several tools for software development. An

IDE usually includes: source code editor, debugger and

automated builder

• Features in editors that benefit programming:

o Syntax Highlighting – keywords are coloured

differently according to their category

o Automatic indentation – after colons for example to

make code blocks more distinct allowing for better

code readability

o A library of preprogrammed subroutines that can be

implemented into a new program to speed up the

development process

 A2-LEVEL COMPUTER SCIENCE//9608

PAGE 17 OF 19

Compiler Interpreter

translates source code

(e.g. Python code) into

machine code which can

be run executed by the

computer

directly

executes/performs

instructions written in a

programming language by

translating one statement

at a time

It takes large amount of

time to analyze the source

code but the overall

execution time is

comparatively faster.

It takes less amount of

time to analyze the source

code but the overall

execution time is slower.

Generates intermediate

object code which further

requires linking, hence

requires more memory.

No intermediate object

code is generated, hence

are memory efficient.

It generates the error

message only after

scanning the whole

program. Hence

debugging is

comparatively hard.

Continues translating the

program until the first

error is met, in which case

it stops. Hence debugging

is easy.

Programming language

like C, C++ use compilers.

Programming language

like Python, Ruby use

interpreters.

• Systems that require high performance and for the long

run should be written in compiled languages like C, C++

• Systems that need to be created quickly and easily

should be written in interpreted languages

Features available in debuggers:

• Stepping - traces through each line of code and steps

into procedures. Allows you to view the effect of each

statement on variables

• Breakpoints - set within code; program stops

temporarily to check that it is operating correctly up to

that point

• Go to File/Line - Look on the current line. with the

cursor, and the line above for a filename and line

number. If found, open the file if not already open, and

show the line. Use this to view source lines referenced in

an exception traceback and lines found by Find in Files.

Also available in the context menu of the Shell window

and Output windows.

• Debugger (toggle) - When active, code entered in the

Shell or run from an Editor will run under the debugger.

In the Editor, breakpoints can be set with the context

menu. This feature is still incomplete and somewhat

experimental.

• Stack Viewer - Show the stack traceback of the last

exception in a tree widget, with access to local and

global variables.

• Auto-open Stack Viewer - Toggle automatically opening

the stack viewer on an unhandled exception.

4.4. SOFTWARE DEVELOPMENT

4.4.1 Software Development Processes
• Program Generator – a program that writes source-code

programs directed by a series of parameters/rules

enabling an individual to create a program with less

times, effort and programming knowledge

• Program Library – a collection of prewritten code that

can be reused as needed to develop programs to speed

up the development process e.g. using the Random

function from the Math Class to generate random

numbers, the Math Class is a component of the Python

Library

4.4.2 Testing
• Programs are written by humans, and so errors are

bound to occur, so regular testing is crucial to ensuring a

program is resilient under various circumstances

• Types of Errors:

o Syntax – incorrect use of programming language,

detected by the compiler/interpreter e.g. typos,

missing a colon ‘:’

o Logical – error in the programmer’s logic e.g.

multiplying two numbers instead of adding them

o Runtime – error that is detected on when the program

runs and causes the program to crash e.g. division by 0

• Test Plans - list of requirements designed to ensure that

the coded solution works as expected. The test plan will

include specific instructions about the data and

conditions the program will be tested with.

• Testing strategies:

o Dry run – Working through and algorithm or program

code with test data, recording the variable values in a

trace table as they change

 A2-LEVEL COMPUTER SCIENCE//9608

PAGE 18 OF 19

o Walkthrough

▪ It is not a formal process/review

▪ It is led by the programmers

▪ Programmer guides the participants through the

document according to his or her thought process

to achieve a common understanding and to gather

feedback.

▪ Useful for the people if they are not from the

software discipline, who are not used to or cannot

easily understand software development process.

o White-box

▪ Testers examine each line of code for the correct

logic and accuracy

o Black-box

▪ Programmer uses test data, for which the results

are known, and compares the results from the

program with those expected

▪ The testing only considers the inputs and outputs

produced

▪ Code is viewed as being inside a black-box

o Integration

▪ Performed when two or more tested units are

combined into a larger structure. The test is often

done on both the interfaces between the

components and the larger structure being

constructed, if its quality property cannot be

assessed from its components.

o Unit Testing is done at the lowest level.

▪ Tests the basic unit of software, which is the

smallest testable piece of software, and is often

called “unit”, “module”, or “component”

interchangeably.

o Alpha

▪ Done within the software company

▪ Program may still be incomplete

▪ Employers not involved in the programming may

find errors missed by the programmer

o Beta

▪ Follows alpha testing

▪ Software is made available to a few selected

testers

▪ Program is virtually complete

▪ Testers provide constructive criticism

o Acceptance

▪ Done by the client

▪ Errors discovered when program runs on client’s

hardware and OS

▪ Software is complete, and the developer must

prove to the client that the software meets all the

requirements

• Types of Test Data:

o Normal – within acceptable range and follows rules

o Borderline – at the limits of the range set

o Invalid – completely out of range and doesn’t follow

any rules, should be rejected

4.4.3 Project Management
• Think of Microsoft, over a million lines of code wasn’t

written by just one person. The bigger picture is broken

down into modules and split amongst teams of people.

• With such large teams, keeping everyone on track is

crucial to achieving the goal and hence a Project

Manager is needed to direct the breakdown and

processes of development.

• Project planning techniques include the use of GANTT

and PERT charts.

• GANNT chart – a horizontal bar chart of tasks with clear

start and ends end dates, named after Henry L. Gantt in

1917

• PERT chart – Program Evaluation Review Technique

charts is a network model that allows for the

randomness in activity completion times. It follows the

Critical Path Method to use a fixed time estimate for

each activity within a project/program

 A2-LEVEL COMPUTER SCIENCE//9608

PAGE 19 OF 19

5

B

9

C

2

D

E

3

F

6

1,23,4,5

20

8

17

	A2CS Cover Final.pdf (p.1)
	A2CS Notes Final.pdf (p.2-20)
	A2CS Back Final.pdf (p.21)

