

12.2)Program Design (Structure charts) Computer Science 9618

with Majid Tahir

1
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

Syllabus Content:
12.2 Program Design
Candidates should be able to:
Use a structure chart to decompose a problem into sub-tasks and express the parameters passed
between the various modules / procedures / functions which are part of the algorithm design
Notes and guidance

 Describe the purpose of a structure chart
 Construct a structure chart for a given problem
 Derive equivalent pseudocode from a structure chart
 Show understanding of the purpose of state-transition diagrams to document an algorithm

Structure charts:
An alternative approach to modular design is to choose the sub-tasks and then construct a
structure chart to show the interrelations between the modules. Each box of the structure chart
represents a module. Each level is a refinement of the level above.

A structure chart also shows the interface between modules, the variables. These variables are
referred to as 'parameters'.

A parameter supplying a value to a lower-level module is shown as a downwards pointing
arrow. A parameter supplying a new value to the module at the next higher level is shown as an
upward pointing arrow.

Figure below shows a structure chart for a module that calculates the average of two numbers.
The top-level box is the name of the module, which is refined into the three subtasks of Level 1.
The input numbers (parameters Number1 and Number2) are passed into the 'Calculate
Average' sub-task and then the Average parameter is passed into the 'OUTPUT Average' sub-
task. The arrows show how the parameters are passed between the modules.

This parameter passing is known as the 'interface'.

12.2)Program Design (Structure charts) Computer Science 9618

with Majid Tahir

2
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

Answer:

Structure charts can also show control information: selection and repetition.

The simple number-guessing game could be modularised and presented as a structure
chart, as shown in Figure below

12.2)Program Design (Structure charts) Computer Science 9618

with Majid Tahir

3
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

Structure chart for number-guessing game with only one guess allowed

Past paper questions on structure charts:
MJ 2015/ 21
Q 3:
When the guarantee on a computer runs out, the owner can take out insurance to cover
breakdown and repairs.

The price of the insurance is calculated from:

 the model of the computer
 the age of the computer
 the current insurance rates

Following an enquiry to the insurance company, the customer receives a quotation letter with
the price of the insurance.
A program is to be produced.

The structure chart below shows the modular design for this process:

12.2)Program Design (Structure charts) Computer Science 9618

with Majid Tahir

4
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

12.2)Program Design (Structure charts) Computer Science 9618

with Majid Tahir

5
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

Answer:

12.2)Program Design (Structure charts) Computer Science 9618

with Majid Tahir

6
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

Answer:

12.2)Program Design (Structure charts) Computer Science 9618

with Majid Tahir

7
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

Consider structure chart:

To derive pseudocode from structure chart, we need to make identifiers:

Declaring contants and variables in Pseudocodes:

DECLARE radius: REAL

DECLARE radius: REAL

CONSTANT pi 3.142

Making PSEUDOCODE for Structure Chart above:

FUNCTION calculateVolume (radius: REAL) RETURS : REAL
RETURN (4/3) * pi * radius * radius * radius

END FUNCTION

 FUNCTION calculateSurfaceArea (radius: REAL) RETURS : REAL

RETURN (4/3) * pi * radius * radius
END FUNCTION

The Input/Output modules can be made as Procedures

PROCEDURE InputRadius
 OUTPUT (“Please Enter radius of Sphere”)
 INPUT radius

 WHILE radius <0 Do

 OUTPUT (“Please Enter a positive number”)
 INPUT radius
 END WHILE

END PROCEDURE

12.2)Program Design (Structure charts) Computer Science 9618

with Majid Tahir

8
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

PROCEDURE outputAnswer

 OUTPUT answer

END PROCEDURE

Combining all the program

DECLARE radius: REAL

DECLARE radius: REAL

CONSTANT pi 3.142

FUNCTION calculateVolume (radius: REAL) RETURS : REAL

RETURN (4/3) * pi * radius * radius * radius

END FUNCTION

 FUNCTION calculateSurfaceArea (radius: REAL) RETURS : REAL

RETURN (4/3) * pi * radius * radius

END FUNCTION

PROCEDURE InputRadius

 OUTPUT (“Please Enter radius of Sphere”)
 INPUT radius

 WHILE radius <0 Do
 OUTPUT (“Please Enter a positive number”)
 INPUT radius

 END WHILE

END PROCEDURE

PROCEDURE outputAnswer

 OUTPUT answer

END PROCEDURE

CALL inputRadius

WHILE radius <> 0 Do

 OUTPUT (“Do you want to Calculate Volume (V) or Surface Area (S)”)
 INPUT reply

 IF reply = “V”
 THEN

answer calculateVolume(radius)

 OUTPUT “Volume”
 ELSE

answer calculateSurfaceARea(radius)

 OUTPUT “Surface Area”
 END IF

CALL outputAnswer

CALL inputRadius

END WHILE

12.2)Program Design (Structure charts) Computer Science 9618

with Majid Tahir

9
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

Syllabus Content:

12.2 Program Design

State-transition diagrams

 use state-transition diagrams to document an algorithm

 use state-transition diagrams to show the behaviour of an object

4.2.3: State- transition diagrams:

A computer system can be seen as a finite state machine (FSM). An FSM has a start state. An
input to the FSM produces a transformation from one state to another state.

The information about the states of an FSM can be presented in a state-transition table.

Table shows an example FSM represented as a state-transition table If the FSM is in state Sl, an
input of a causes no change of state.

 If the FSM is in state S1, an input of b transforms
S1 to S2.

 If the FSM is in state S2, an input of b causes no
change of state.

 If the FSM is in state S2, an input of a transforms
S2 to S1.

A state-transition diagram can be used to describe the behaviour of Table 24.05 State-transition
table an FSM.

Figure STD shows the start state as S1 (denoted by•). If the FSM has a final state

(also known as the halting state), this is shown by a double-circled state (S1 in the example).

Figure STD

12.2)Program Design (Structure charts) Computer Science 9618

with Majid Tahir

10
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

If an input causes an output this is shown by a vertical bar, For example, if the current state is
S1, an input of b produces output c and transforms the FSM to state S2.

Figure State-transition diagram with outputs

Creating a state-transition diagram for an intruder detection system

A program is required that simulates the behaviour of an intruder detection system.

Description of the system: The system has a battery power supply. The system is activated when
the start button is pressed. Pressing the start button when the system is active has no effect. To
de-activate the system, the operator must enter a PIN. The system goes into alert mode when a
sensor is activated. The system will stay in alert mode for two minutes. If the system has not
been de-activated within two minutes an alarm bell will ring.

We can complete a state-transition table (Table) using the information from the system
description.

12.2)Program Design (Structure charts) Computer Science 9618

with Majid Tahir

11
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

The start state is 'System inactive'. We can draw a state-transition diagram (Figure 24.07) from
the information in Table

Past Paper Questions:
9608/41/M/J/15

1/- A turnstile is a gate which is in a locked state. To open it and pass through, a
customer inserts a coin into a slot on the turnstile. The turnstile then unlocks and allows
the customer to push the turnstile and pass through the gate.

After the customer has passed through, the turnstile locks again. If a customer pushes
the turnstile while it is in the locked state, it will remain locked until another coin is
inserted.

The turnstile has two possible states: locked and unlocked. The transition from one
state to another is as shown in the table below.

12.2)Program Design (Structure charts) Computer Science 9618

with Majid Tahir

12
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

(9608/43/M/J/15)

Q2/ - A petrol filling station has a single self-service petrol pump.

A customer can use the petrol pump when it is ready to dispense petrol. The pump is in
use when the customer takes the nozzle from a holster on the pump. The pump
dispenses petrol while the customer presses the trigger on the nozzle. When the
customer replaces the nozzle into the holster, the pump is out of use. The cashier must
press a reset button to make the pump ready for the next customer to use.

The petrol pump’s four possible states and the transition from one state to another are
as shown in the table below.

12.2)Program Design (Structure charts) Computer Science 9618

with Majid Tahir

13
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

Complete the state transition diagram for the petrol pump:

Answers
9608/41/M/J/15

12.2)Program Design (Structure charts) Computer Science 9618

with Majid Tahir

14
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

(9608/43/M/J/15)

12.2)Program Design (Structure charts) Computer Science 9618

with Majid Tahir

15
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

2

Refrences:

 AS & A level Course Book by Sylvia Langfield & Dave Duddell
 A level 9608 Pastpaers

