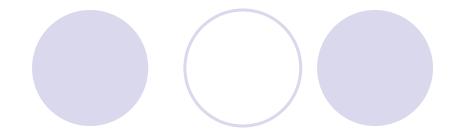
Chemistry

Electricity

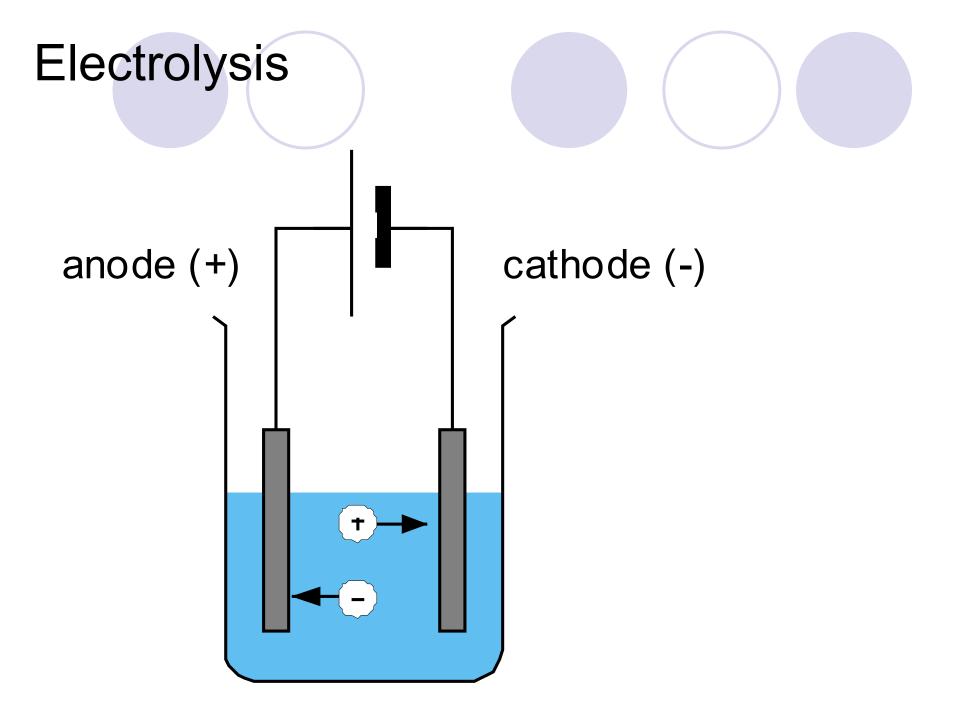
QBA Miguel A. Castro Ramírez



COLEGIO AMERICANO DE SAN CARLOS

Blvd. Luis Encinas S/N Col. Miramar esq. Paseo Colinas Guaymas, Sonora, Mexico 85510 Tel: (622) 221-2551 or (622) 221-1617

Simple Electrical Devices and Circuit Symbols


Electrical Device	Circuit Symbol	Function
Cell	- F	Source of electricity
Battery	┥╋┤╊┤╊┤╊╴	A collection of cells
Bulb		To register whether electricity is flowing
Switch	_ \	To start or stop flow of electricity
Ammeter	A	Measure amount of current
Voltmeter	V	Measure voltage of cells
Rheostat		Ensure suitable, constant current of electricity is flowing

- Electricity is passed from a battery through a liquid which may be a solution/molten solid.
- The plates which carry the electricity into the liquid are called electrodes
- Molten ionic compounds or aqueous solution of ionic compounds that allows electricity to pass through are called electrolytes

Electrodes

- Metal plates or graphite rods that conduct electricity into the electrolyte
 - Eg. Platinum, copper
- Cathode:
 - Electrode that is connected to the negative terminal of the battery. Postively charged ions, cations, moved towards the cathode
- Anode:
 - Electrode that is connected to the positive terminal of the battery. Negatively charged ions, anions, moved towards the

Conduction of electricity

- Conductor is a substance which conducts electricity but is not chemically changed during the conduction
 - Presence of freely moving valence electrons
 - Eg. All metals and graphite
- Non-conductor does not allow the passage of electricity, a.k.a insulator
 - Valence electrons are held in fixed positions
 - Eg. Sulphur, phosphorus, diamond, solid state crystalline salts, wood and glass

Electrolytes and non-Electrolytes

Electrolytes:

- Molten ionic compounds or aqueous solution of ionic compounds that allows electricity to pass through and are decomposed in the process
- Eg. Acids, Alkali, Salts dissolved in water, molten salts
- Non-electrolytes:
 - Does not allow passage of electricity
 - Eg. Distilled water, alcohol, turpentine, oil, paraffin, organic solvents

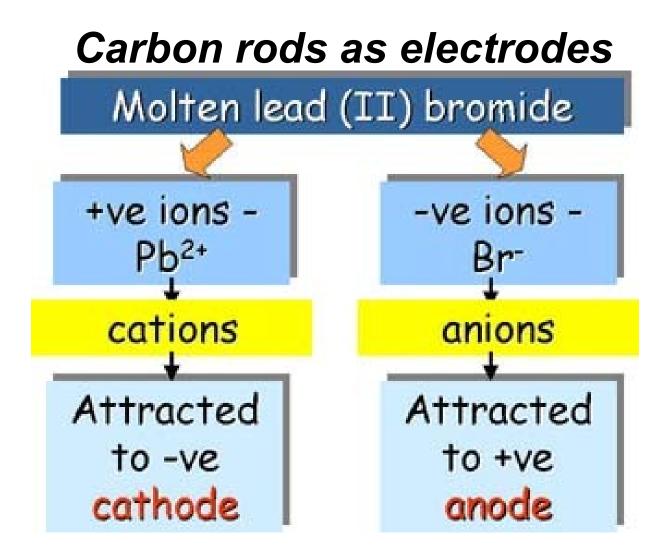
Strong and weak Electrolytes

- Strong Electrolytes
- Fully ionised
- Strong acids
- Strong alkalis
- Salt solution

- Weak Electrolytes
- Partially ionised
- Weak acids
 - Ethanoic acid
 - Sulphurous acid
 - Carbonic acid
- Weak alkalis
 - Limewater
 - Ammonia

- When electricity is passed through an electrolyte, chemical decomposition occurs
- This involves the 'splitting up' of the electrolyte
- Since all electrolytes are ionic, composed of positively and negatively charged ions

- The process: When an electric current pass through the electrolyte, ions in the solution migrate towards the oppositely charged electrode
- This discharge of ions at the electrodes results in the chemical decomposition of the electrolyte to form its elements.


- At the anode, negatively charged ions lose their electron(s) to the anode (connected to positive terminal of battery) to form neutral atoms.
- The negatively charged ions are said to be oxidised and discharged at the anode.
- Oxidation occured at the anode.

- At the cathode, positively charged ions gain electron(s) from the cathode (connected to negative terminal of battery) to form neutral atoms.
- The positively charged ions are said to be reduced and discharged at the cathode.
- Reduction occured at the cathode.

Electrolysis of Molten Compounds

- Many ionic compounds are binary compounds.
- A binary compound is a compound containing only 2 elements. It contains a metal cation and a non-metal anion.
- The electrolysis of a molten binary compound will yield a metal and a non-metal as products.


Electrolysis of Molten Lead(II) Bromide

At the cathode

- Pb²⁺ ions gain electrons from the electrodes to become lead atoms
- The Pb²⁺ are reduced
- Pb²⁺ ions have been discharged and molten greyish globules of lead metal are formed below the electrolyte
- Electrode reaction at the cathode:
 - $\bigcirc Pb^{2+}(l) + 2e \rightarrow Pb(l)$

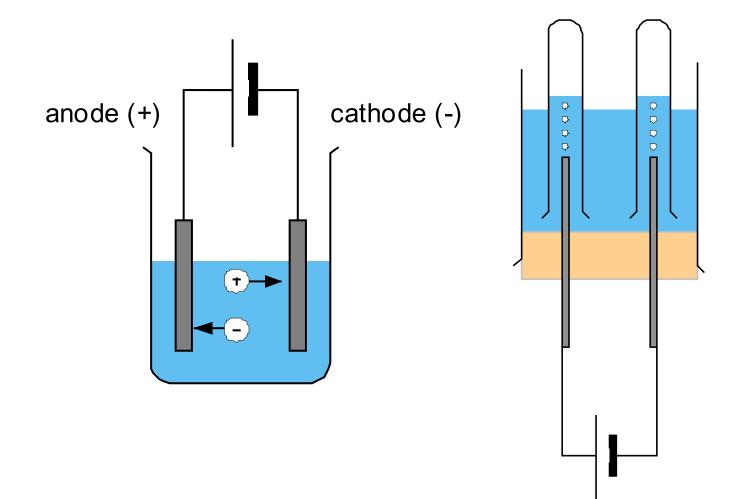
At the anode

- Br ions lose electrons to electrode to become bromine molecules
- The Br are oxidised.
- Bromide ions are discharged forming an effervescence of pungent, redbrown bromine gas.
- Electrode reaction at the anode:

 $\circ 2 Br^{-}(l) \rightarrow Br_{2}(g) + 2e^{-}$

Electrolysis of other molten compounds with carbon electrodes

- Molten Sodium
 Chloride
- Product at cathode
 Sodium
 - Na⁺ + e → Na
- Product at anode
 Chlorine


 \circ 2Cl \rightarrow Cl₂ + 2e

- Molten Lead (II) Oxide
- Product at cathode
 - Lead
 - Pb²⁺ + 2e → Pb
- Product at anode
 - Oxygen
 - $\circ 2O^{2} \rightarrow O_2 + 4e$

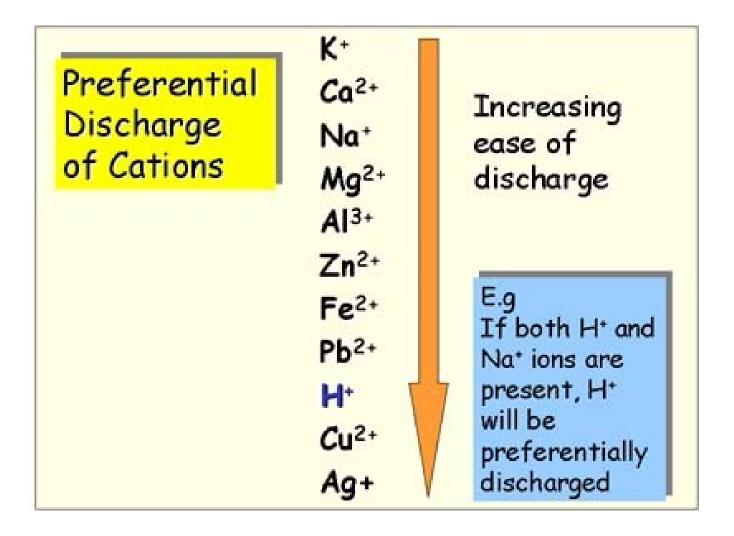
Evidence of lons

Electrolysis provides evidence for the existence of ions which are held in a lattice when solid but which are free to move when molten or in solution.

Electrolysis of Aqueous Solutions

Electrolysis of Aqueous Solutions

- An aqueous solution of a compound is a mixture of 2 electrolytes
- Eg. Aqueous copper (II) sulphate
 - Water
 - Hydrogen ions and hydroxide ions
 - Copper (II) sulphate
 - Copper (II) ions and sulphate ions
- Ions discharged depends on the position of the ions in the electrochemical series


Rules for Predicting Selective Discharge of Cations

- Positive ions from the metal lowest in the reactivity series are discharged at the cathode in preference to any other ions present in the solution
- Ions of less reactive metals e.g. Cu²⁺, Au⁺, Ag⁺ are preferentially discharged
- Otherwise, H⁺ ions from water will be discharged/reduced to form H₂ gas.

 $\circ 2H^+(aq) + 2e \rightarrow H_2(g)$

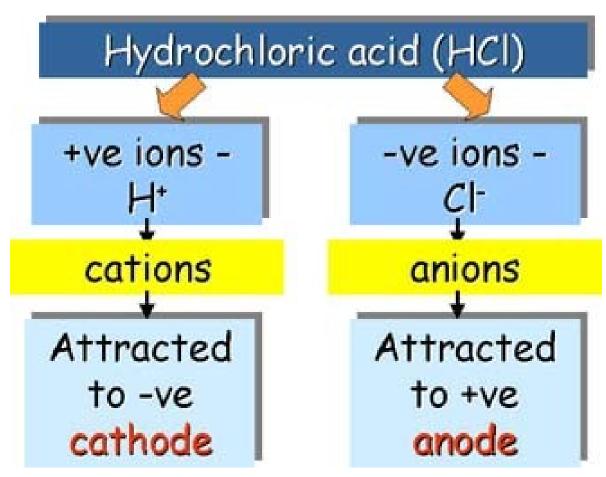
Ions of very reactive metals (Na⁺, K⁺, Ca²⁺)
 cannot be discharged in the presence of water

Rules for Predicting Selective Discharge of Cations

Rules for Predicting Selective Discharge of Anions

 OH⁻ ions from water are preferentially discharged when the solutions are dilute, to form O₂.

 \bigcirc 4OH⁻(aq) → O₂(g) + 2H₂O(l) + 4e


- Negative ions such as Cl⁻, Br and l⁻ can be preferentially discharged when their concentrations are high enough when compared to OH⁻
- When SO₄²⁻ and NO₃⁻ are present in water, it is the OH⁻ from water which is preferentially discharged.

Rules for Predicting Selective Discharge of Anions

Preferential Discharge of Anions	SO4 ²⁻ NO3 ⁻ Cl-	Increasing ease of discharge
	Br-	E.g If both NO3 ⁻ and OH- ions
	I- (are present, OH- will be
	он-	preferentially discharged

Electrolysis of Concentrated Hydrochloric Acid

Carbon rods as electrodes

At the cathode

- H⁺ ions gain electrons from the electrodes to become hydrogen gas molecules
- Gas produced extinguishes a lighted splint with a 'pop' sound
- Electrode Reaction at the Cathode:

 \circ 2H⁺(aq) + 2e \rightarrow H₂(g)

At the anode

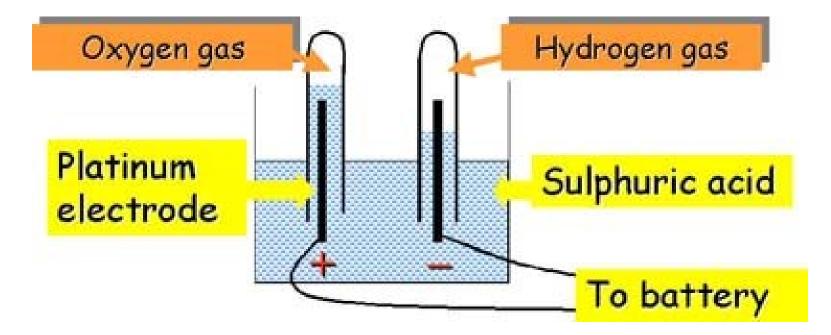
- Ct ions lose electrons to the electrode to become chlorine gas molecules
- Gas turns moist blue litmus paper red and then bleached it
- Electrode Reaction at the Anode:
 - 2Cl⁻(aq) \rightarrow Cl₂(g) + 2e
- Overall equation:

 $\bigcirc 2HCl(aq) \twoheadrightarrow Cl_2(g) + H_2(g)$

Electrolysis of other concentrated aqueous solutions with carbon electrodes

- Concentrated sodium chloride solution
- Product at cathode
 - Hydrogen
 - 2H⁺ + 2e → H₂
- Product at anode
 - Chlorine

Concentrated zinc sulphate solution


- Product at cathode
 - Zinc

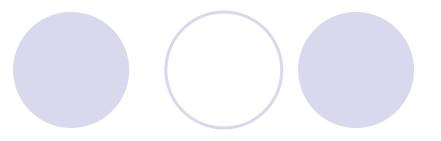
- Product at anode
 - Oxygen

$$\circ$$
 40H \rightarrow O₂ + 2H₂O +

Electrolysis of Dilute Sulphuric Acid

Platinum rods as electrodes

At the cathode


 H⁺ ions attracted to the cathode, gain electrons and are discharged to form hydrogen gas

•
$$2H^+ + 2e \rightarrow H_2$$

At the anode

- Both OH⁻ and SO₄²⁻ will be attracted to the anode but OH⁻ ions are preferentially discharged to form oxygen gas.
- $4OH \rightarrow O_2 + 2H_2O + 4e$

Overall Reaction

- $2H_2O(I) \rightarrow 2H_2(g) + O_2(g)$
- Sometimes known as electrolysis of acidified water
- Sulphuric acid increases the number of mobile ions to help conduct electricity
- In this process, the amount of acid remains the same, but amount of water decreases
- Hence the concentration of sulphuric acid increases

Electrolysis of other diluted aqueous solutions with carbon electrodes

- Dilute sodium chloride solution
- Product at cathode
 - Hydrogen
 - 2H⁺ + 2e → H₂
- Product at anode
 - Oxygen
 - 4OH⁻→ O₂ + 2H₂O +
 4e

- Dilute copper (II) sulphate solution
- Product at cathode
 - Copper
 - O Cu²⁺ + 2e → Cu
- Product at anode
 - Oxygen
 - 4OH⁻→ O₂ + 2H₂O +
 4e

Inert & Reactive Electrodes

- Inert Electrodes
 - Carbon
 - Platinum
- Reactive Electrodes
- take part in the reactions
 - Copper
 - Silver

Electrolysis of Copper (II) Sulphate Solution Using Copper Electrodes

- At the cathode,
- Both Cu²⁺ and H⁺ ions attracted to it but Cu²⁺ preferentially discharged and deposited on the cathode as a brown deposit of solid copper.
- Cu²⁺(aq) + 2e → Cu(s)

Electrolysis of Copper (II) Sulphate Solution Using Copper Electrodes

- At the anode, both OH⁻ and SO₄²⁻ ions attracted to it but NEITHER are DISCHARGED
- Copper electrode dissolved instead
- $Cu(s) \rightarrow Cu^{2+}(aq) + 2e$

Overall Reaction

- Cathode gains copper & becomes larger
- Anode loses copper & become smaller
- Concentration & colour of copper(II) sulphate solution remain unchanged
- Amount of Cu²⁺ ions which are discharged to form Cu deposits on the cathode (from the solution) = Amount of Cu atoms (from the anode) which ionises and enter the solution as Cu²⁺ ions

Factors affecting discharge of lons

- Relative positions of the ions in the reactivity series
- Concentration of the ions in the electrolyte
- Nature of the electrode

Generally

- Metals or hydrogen are formed at the cathode
- Non-metals (other than hydrogen) are formed at the anode

Uses of Electrolysis

- Purification of metals
- Electroplating
- Extraction of metals